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Generation of Versatile and Expressive Characters

Supplementary Material

In this supplementary material, we provide a detailed
introduction to the construction of our proposed dataset
AnimeRig, including the preparation of rigging ground
truth of mesh and 3D Gaussian data in Sec. 1. In Sec. 2,
we elaborate on the method’s details, covering input pre-
processing, 3D Gaussian optimization, and the design of the
bone networks. Finally, in Sec. 3, we include additional ex-
perimental details and results.

1. Dataset Construction Details

To the best of our knowledge, no large-scale open-
source rigging dataset exists. Existing large 3D object
datasets (e.g., Objaverse [4, 5] and OmniObject3D [20])
do not contain enough 3D anime characters. In addi-
tion, Anime3D [11] introduced a large-scale 3D character
dataset; however, none of the data includes rigging infor-
mation. We first introduce AnimeRig, a large dataset of
anime characters from VRoidHub 1 which contains 9,420
rigged textured meshes. In the following, we explain how
to process rigged character mesh data and describe how to
obtain the corresponding rigging ground truth data based on
the 3D Gaussian:
Rigging Ground Truth of Mesh: The data we collected in-
cludes textured meshes and their corresponding rigging in-
formation. We process the raw data in the following steps:
We first filter out non-human shapes, and for data with is-
sues in skeletons or skinning, we enlist the help of anima-
tors for corrections. Then for the extracted part mesh data,
we combine the hair, clothing, and torso meshes to obtain a
complete mesh. For the skeleton data, we remove the fine
finger joints but retain the wrist joints to facilitate learn-
ing. Correspondingly, we adjust the skinning by transfer-
ring the weights of the removed joints to their respective
parent joints, resulting in a new skinning configuration.
Rigging Ground Truth of 3D Gaussian: Since the original
mesh data differs in positions and scales from the 3D Gaus-
sian generated by LGM [15], we need to transfer the rigging
information obtained from the mesh onto the 3D Gaussian.
Therefore, we perform the same positional transformation
on the joints, keeping the bone connection unchanged. This
lets us obtain the ground truth data for the skeleton corre-
sponding to the 3D Gaussian. We define the skinning of
each point on the 3D Gaussian as a weighted average of the
k nearest neighbors on the corresponding mesh. This de-
sign ensures that the 3D Gaussian deforms smoothly when

1https://hub.vroid.com/en

animated. This way, we can obtain the rigging ground truth
corresponding to the 3D Gaussian.

2. Methods Details
2.1. Input Pre-processing Details
Text Input: To accommodate text-based input, we fine-
tune Animagine-XL on an anime character dataset. To pre-
pare for fine-tuning, we first render front-view images of
our dataset using Blender, followed by human body pars-
ing with SegFormer [21]. We utilize BLIP [9] to gener-
ate Visual Question Answering (VQA) descriptions [7], ap-
pending the phrase ”cartoon style” to create a complete im-
age caption. We use a fine-tuned Animagine-XL model
with T-pose images as the Openpose ControlNet to gener-
ate standard T-pose anime images from text input. Fig. 2
shows the T-pose anime characters generated by the fine-
tuned model under different text inputs. Anime image seg-
mentation model uses anime-segmentation 2. Using the
fine-tuned Animagine-XL model in combination with IP-
Adapter and OpenPose as ControlNet, we convert anime
characters in arbitrary poses to T-pose anime images. This
approach demonstrates strong generalization capabilities on
cartoon characters and game avatars. Some input images are
sourced from examples used in CharacterGen [11].
Real Human Image Input: To accommodate input from
real human image, we employ ControlNet [24], integrat-
ing OpenPose [1, 2, 14, 19] and IP-Adapter [23], with text
prompts from VQA as optional inputs. The first stage in-
volves converting any posed image into T-pose. We use the
Realistic Vision3 series models as the base models for im-
age generation, with real human photos as input to the IP-
Adapter and the T-pose as input to OpenPose ControlNet.
In the second stage, our fine-tuned model on Animagine-
XL serves as the base model for image generation. The
generated real human T-pose image is used as input to the
IP-Adapter, with the T-pose provided to OpenPose Control-
Net. Fig. 4 demonstrates how our pipeline effectively adapts
to various input poses, preserving the details and features of
the input portraits.
Anime Image Input: To adapt to anime image inputs, we
convert non-T-pose anime images into T-pose anime images
using a fine-tuned Animagine-XL model along with the pre-
viously mentioned real human to T-pose pipeline. Fig. 3
demonstrates how our pipeline effectively adapts anime im-

2https://github.com/SkyTNT/anime-segmentation/
3https://civitai.com/models/152525/realism-engine-sdxl



ages in various input poses to T-pose anime outputs, pre-
serving the details and features of the original portraits.

2.2. 3D Gaussian Refinement Details
In this step, we utilize the T-pose anime image as a condi-
tional input for generating the 3D Gaussian representation.
When reconstructing from a full-body image input, the re-
sults generated by LGM suffer from severe artifacts, leading
to a noticeable loss of detail, especially in the head region.

Figure 1. Visualization of cameras arranged in a spherical spiral
path, each pointing towards a central look-at point.

To enhance the reconstruction quality of LGM for anime
characters, we render 100 full-body T-pose images for each
character in the dataset, following a spherical spiral path,
and fine-tune LGM with these images. The 100 selected
camera viewpoints are shown in Fig. 1.

Subsequently, we decouple the head and body for sep-
arate reconstruction, merging them through Gaussian reg-
istration to retain more detailed features. To further im-
prove multi-view consistency, we replace the original mod-
ules in LGM responsible for generating consistent multi-
view images (ImageDream [18] and MVDream [13]) with
SV3D [17], as SV3D has demonstrated superior multi-view
consistency.

Fig. 5 shows a comparison of the LGM model with and
without SV3D as the multi-view generator, as well as before
and after fine-tuning.

We crop the head region from the T-pose anime image
for separate reconstruction. Using SV3D, we generate con-
tinuous new view images at 15° intervals in the horizontal

direction, and selected four images at 90° intervals, includ-
ing the frontal view, as input for LGM. The Gaussian points
of the head and the full body obtained from LGM are regis-
tered by first applying a known initial alignment based on a
fixed cropping frame, followed by refining the registration
using the Iterative Closest Point (ICP) algorithm [3].

The registration problem is formulated as an optimiza-
tion task, where we aim to find the optimal rotation R, trans-
lation t, and scaling factors s that minimize the weighted
sum of squared distances between the transformed head
points and the body points. The initial translation and scal-
ing factors are determined by the size and position of the
head crop within the full-body image:

E(R, t, s) = arg min
R∈SO(d),t∈Rd,s∈R

n∑
i=1

wi ∥Rsqi + t− pi∥2 ,

(1)
where pi and qi are corresponding points in the body and
head points, respectively, and wi are the associated weights.
After the alignment, we merge the head and body points.
During this merging step, points from the head Gaussian
that may overlap with the body Gaussian are filtered out to
ensure a smooth transition between the two parts.

2.3. Bone Connection

In this part, we provide a detailed explanation of how to ob-
tain bone connections based on the predicted joints. The
core problem is to estimate the probability of each pair of
joints being in a parent-child relationship. Instead of di-
rectly learning this probability matrix, we construct a cost
matrix based on distance and connection direction dimen-
sions followed by TARig [10]. Since our GSDiff model can
generate accurate joint positions, we can directly compute
the cost matrix and then obtain reasonable bone connectiv-
ity using Minimum Spanning Tree (MST) [22].

We use the boneflow B, which consists of normalized
direction vectors pointing from each joint to its parent joint,
to learn the bone connectivity. We extract the geometric and
appearance features of 3D Gaussian following the approach
outlined in Sec 4.2 of the main paper and then use an MLP
to estimate the boneflow B̂:

B̂ = fb(µ, {Ii}4i=1;Wb), (2)

where Wb denotes the learned parameters of the boneflow
estimation. The boneflow loss is the MSE between the
ground truth boneflow B and the predicted boneflow B̂.

Based on the boneflow estimated above, we define the
following cost function for each pair of predicted joints Ĵi

and Ĵj , where costij represents the total cost of traveling
from joint i to joint j [10].



costi,j = costeuc(i, j) + λ1costflow(i, j),

=
∣∣∣Ĵj − Ĵi

∣∣∣+ λ1
1

|Ci|
∑
k∈Ci

arccos B̂k · Ĵij ,
(3)

where Ci represents the set of Gaussian points surrounding
joint i and Ĵij = (Ĵj − Ĵi)/

∣∣∣Ĵj − Ĵi

∣∣∣. costeuc(i, j) repre-

sents the Euclidean distance loss between Ĵi and Ĵj , while
costflow(i, j) represents the deviation of the bone formed
between Ĵi and Ĵj from the ground truth direction. A lower
cost indicates a higher likelihood of forming a bone between
them.

The connections follow a fixed topology for the body
joints due to their standardized structure. We then compute
the cost matrix between each joint in Jo and that in J. In
our implementation, we use Prim’s algorithm [12], where
the defined cost matrix serves as the weight matrix. We se-
lect the central point along the Y-axis as the root joint of the
skeleton and use it as the starting point for Prim’s algorithm.
This method produces structurally valid skeletons and min-
imizes the need for post-processing before animation.

3. Experiments
3.1. Implementation details
We provide more detailed experimental specifics for joint
prediction. Regarding the training process, the input must
be the joints with the same number of points. We do not
need to modify the body joints Jb as their point count
is fixed. However, to learn the other joints Jo, we pad
the joints to N1 points to ensure the input has the same
number of points. The padding method involves copying
noisy points at the (0, 0, 0) position. During testing, for
the generated joints, we treat points that fall within a small
range around (0, 0, 0) as noise points and remove them,
using the remaining points as the predicted other joints.
We also down-sample the 3D Gaussian using the farthest
point sampling (FPS) strategy to the same point number N2.
The training loss is simply the standard diffusion loss fol-
lowed [8].

Here, we provide the hyperparameters used in the exper-
iments. For joint prediction, we use k-NN search to find
k1 = 10 3D Gaussian points around each joint. We pad
the other joint for each shape to N1 = 175, resulting in
200 joints. Meanwhile, we down-sample the 3D Gaussian
to N2 = 10000 points. We train our diffusion model for
200 epochs with a batch size of 16. Other parameters re-
lated to diffusion training follow the settings in [16]. For
bone estimation, we train the DGCCN with a batch size of
16 over 10 epochs. In the cost function, we set λ1 = 0.1,
and Ci is composed of the 10 nearest 3D Gaussian points
to each joint i. The inclusion of the boneflow cost helps to

correct erroneous points caused by proximity. For skinning
prediction, we first construct the initial skinning weights
Sinit as the estimation of the ground truth by k-NN search
between the joints J and the Gaussian points µ. Here we
use k2 = 2. Additionally, we train a 3-layer MLP to pre-
dict skinning weights and we set the weight of smooth loss
λ2 = 0.01. Our framework is implemented with PyTorch
and on NVIDIA A100 GPU.

3.2. Metircs Descriptions
Here, we present the evaluation metrics used for skeleton
and skinning prediction. All the metrics follow the design in
RigNet [22]. For skeleton prediction, we use the following
metrics:

(a) CD-J2J: The Chamfer distance between joints. We
calculate the average symmetric distance between the pre-
dicted and the ground truth joints.

(b) CD-J2B: The Chamfer distance between joints and
bones. This computes the distance between predicted joints
and the nearest bones in the ground truth skeleton, sym-
metrized in both directions.

(c) CD-B2B: The Chamfer distance between bones, as-
sessing skeleton similarity based on bone placement. Lower
values for all these metrics indicate better alignment.

(d) IoU: Intersection over Union is used to evaluate
skeleton matching by calculating the proportion of pre-
dicted and ground truth joints that fall within a set tolerance,
adjusted by the local shape diameter.

(e) Precision & Recall: Precision measures the fraction
of predicted joints matching ground truth joints within the
tolerance, while recall reflects the fraction of ground truth
joints matched to predicted ones.

For skinning evaluation, we compare predicted skinning
maps to the ground truth using:

(a) Precision & Recall: Calculated based on the influen-
tial bones (bones with skinning weights exceeding a thresh-
old) for each vertex.

(b) L1-norm: The L1 norm of the difference between
predicted and ground truth skinning weights across mesh
vertices.

3.3. Additional Qualitative Results
In this section, we provide additional visualization results
to further demonstrate the robustness of our method. Fig. 2,
Fig. 3, and Fig. 4 respectively showcase the results of trans-
forming inputs from text, anime images in arbitrary poses,
and real human data in arbitrary poses into T-pose anime
images. These results highlight the flexibility of our method
in handling multi-modal inputs.

For T-pose anime image inputs, Fig. 5 presents the gen-
eration results using the AnimeRig dataset to fine-tune
LGM, showing significantly higher-quality 3D Gaussians
compared to pre-fine-tuned generation. Additionally, Fig. 6



illustrates the results of the 3D Gaussian Refinement intro-
duced in Sec. 2.2. We perform a magnified rendering cen-
tered on the head for a more detailed comparison. The re-
sults demonstrate that our method achieves a notable en-
hancement in rendering quality compared to mesh-based
methods [11]. Moreover, our 3D Gaussian ICP method ef-
fectively improves local rendering quality and can be flexi-
bly adapted to other tasks.

We also provide additional skeleton generation results
in Fig. 7 and skinning generation results in Fig. 8, demon-
strating that our method can generate reasonable rigging re-
sults for characters with different styles. Finally, Fig. 9 and
Fig. 10 respectively show the T-pose anime images and rig-
ging results obtained from text and real human data inputs.



Text Input T pose Anime Text Input T pose Anime Text Input T pose Anime Text Input T pose Anime

A young woman 
wearing a red floral 
dress with a white 
belt, with long, 
black hair and blue 
eyes.

A young man in a black 
leather jacket and dark 
jeans, with medium-
length, messy brown 
hair and a stubble beard.

A man resembling Joe 
Biden, with white hair, 
blue eyes, and a warm, 
friendly smile, dressed 
in a navy blue suit with 
a red tie.

A woman resembling 
Audrey Hepburn, with a 
chic updo, a delicate smile, 
dressed in a classic black 
dress with a pearl necklace, 
exuding timeless elegance.

A middle-aged man 
in a blue business 
suit with a white 
shirt and red tie, 
with short, straight 
brown hair and 
glasses.

A young woman in a 
white lab coat over a 
light blue blouse and 
black pants, with long, 
straight red hair and 
freckles.

A man resembling 
Donald Trump, with 
blonde hair styled in a 
comb-over, a confident 
expression, wearing a 
dark suit and a red tie.

A man resembling Barack 
Obama, with short black 
hair, a warm and 
approachable smile, 
dressed in a classic navy 
suit and tie, exuding 
confidence and calm 
leadership.

A teenage girl in a 
pink hoodie and 
ripped jeans, with 
shoulder-length 
blonde hair in a 
ponytail and green 
eyes.

A middle-aged man in a 
yellow raincoat and blue 
jeans, with short, curly 
blonde hair and a 
rugged beard.

A woman resembling 
Marilyn Monroe, with 
platinum blonde curls, 
red lipstick, and a 
glamorous smile, 
dressed in a white 
halter dress and high 
heels, exuding classic 
Hollywood glamour.

A man resembling Albert 
Einstein, with wild gray 
hair, a bushy mustache, 
and a thoughtful 
expression, wearing a 
casual sweater and 
holding a chalkboard, 
exuding the aura of a 
brilliant scientist.

An elderly woman 
in a purple cardigan 
and gray skirt, with 
curly silver hair and 
reading glasses.

A man resembling Bill 
Gates, with short light 
brown hair, glasses, and 
a friendly smile, dressed 
in a casual sweater and 
dress pants.

A woman resembling 
Oprah Winfrey, with 
shoulder-length curly 
black hair, a warm 
smile, and dressed in 
elegant, stylish attire.

A woman resembling 
Princess Diana, with short 
blonde hair, a kind and 
graceful smile, dressed in 
a chic, elegant outfit, 
exuding royal elegance 
and warmth.

A young boy in a 
green t-shirt with a 
dinosaur print and 
blue shorts, with 
short, spiky black 
hair and brown eyes.

A woman resembling 
Taylor Swift, with long 
blonde hair styled in 
loose waves, bright red 
lipstick, and a confident 
smile, dressed in a 
sparkly mini dress with 
high heels, exuding a 
glamorous pop star vibe.

A woman resembling 
Queen Elizabeth II, 
with neatly styled 
white hair, wearing a 
brightly colored outfit 
and a matching hat, 
exuding regal elegance.

A man resembling 
Morgan Freeman, with 
short gray hair, a wise and 
calm expression, wearing a 
tailored suit and a crisp 
shirt, exuding a sense of 
wisdom and calm 
authority.

A teenage girl in a 
yellow jacket and 
ripped jeans, with 
long braided black 
hair and brown eyes.

An elderly woman 
in a pink sweater 
and beige trousers, 
with short curly 
white hair and a 
kind smile.

A young man in a black 
turtleneck sweater and 
dark gray trousers, with 
medium-length blond 
hair and glasses.

A boy wearing a red 
baseball cap, a white T-
shirt, and denim shorts, 
with short messy brown 
hair and a playful smile.

A man in a black suit 
with a white dress shirt 
and a bow tie, with 
slicked-back dark brown 
hair and a clean shave.

A woman wearing a 
purple blouse and a 
black skirt, with short 
curly auburn hair and a 
silver necklace.

A teenage boy in a 
white hoodie and 
black joggers, with 
spiky blue-dyed hair 
and bright brown 
eyes.

A young woman in 
a red and white 
athletic outfit, with 
a high ponytail and 
a confident smile.

A middle-aged woman 
wearing a floral maxi 
dress with a denim 
jacket, with shoulder-
length brown hair and 
soft green eyes.

A young man in a gray 
hoodie and black shorts, 
with messy dark hair and 
an athletic build.

An elderly woman in a 
white blouse and a long 
plaid skirt, with short 
silver hair and a pair of 
small round glasses.

A woman in a red 
evening gown with a 
diamond necklace, with 
long wavy black hair and 
a confident expression.

A young woman in 
a yellow sundress 
with white polka 
dots, wearing 
sandals, with long 
wavy brown hair 
and hazel eyes.

A middle-aged man 
in a gray sweater 
and khaki trousers, 
with short black hair 
and a neatly 
trimmed beard.

A teenage boy wearing a 
green varsity jacket and 
dark blue jeans, with 
short, spiky blonde hair 
and brown eyes.

A man in a white chef’s 
coat and black pants, 
with a tall chef’s hat and 
short gray hair.

A young boy in a red T-
shirt and denim overalls, 
with messy brown hair 
and freckles.

A woman in a flowing 
emerald-green evening 
gown, with long red hair 
styled in waves and 
wearing a diamond 
necklace.

A young woman 
wearing a denim 
jacket over a floral 
sundress, with short 
curly hair and a 
bright smile.

A man in a 
firefighter uniform 
with a helmet and 
boots.

A woman in a red 
evening gown, with a 
pearl necklace and long 
black gloves, styled with 
a sleek updo.

A teenage girl in a 
purple tracksuit, with a 
high ponytail and black 
sneakers.

A woman wearing a 
beige trench coat, black 
trousers, and a silk scarf, 
with shoulder-length 
blonde hair.

A woman in a white 
blouse and green pencil 
skirt, with long auburn 
hair and gold hoop 
earrings.

A girl in a ballet 
costume with a pink 
tutu, hair tied into a 
neat bun, wearing 
ballet slippers.

A young man in a 
navy blue military 
uniform with gold 
embroidery, medals 
on his chest, red 
accents, and a sharp 
haircut.

A woman in a nurse’s 
uniform with a soft smile 
and neatly tied back 
brown hair.

A man in a mechanic's 
jumpsuit, with grease-
stained hands and a 
friendly smile.

A woman in a pink 
tracksuit, holding a 
water bottle, with 
braided hair.

A young boy in a soccer 
uniform with knee-high 
socks and cleats.

An elderly man 
wearing a flat cap, a 
plaid shirt, and 
suspenders, smiling 
warmly.

A man in a chef’s 
uniform, with a tall 
white hat and a red 
neckerchief.

A woman in a cocktail 
dress with high heels, 
wearing a silver bracelet 
and earrings.

A man in a detective’s 
trench coat and hat, 
holding a magnifying 
glass.

A young man in a 
vintage suit with 
suspenders, holding a 
pocket watch.

A woman in a winter 
coat with a fur-lined 
hood, holding a cup of 
coffee.

A man in a 
construction 
worker’s uniform 
with a hard hat and 
tool belt.

A young boy in 
pajamas with a 
teddy bear, sitting 
on a bed.

A man in a magician’s 
outfit with a cape and 
top hat, holding a deck 
of cards.

A woman in a black 
dress and pearls, styled 
with vintage 1920s 
waves in her hair.

A boy in a racing suit 
with gloves and a 
helmet under his arm.

A young woman in a 
blue swimsuit and a 
beach sarong, holding 
sunglasses.

A girl in a green 
fairy costume with 
wings and a flower 
crown.

A woman in an 
astronaut suit with a 
helmet.

A young boy in a martial 
arts gi with a white belt, 
practicing punches.

A young woman in a 
flowy pastel dress, 
barefoot on a grassy 
field.

A man in a winter parka, 
snow boots, and a pair 
of ski goggles.

A boy in a scout uniform, 
wearing a sash full of 
badges and a wide-
brimmed hat.

A girl in a red and 
white polka-dot 
dress, dancing in 
the sunlight.

A young boy in a 
baseball uniform, 
holding a bat and 
wearing a cap.

A woman in a bright 
yellow dress, with 
sunflowers in her hair.

Amelia Earhart standing 
beside her airplane, 
wearing a leather flight 
jacket, goggles, and a 
confident smile.

Usain Bolt on a track 
field, wearing a Jamaican 
flag-colored uniform, 
pointing to the sky in his 
iconic victory pose.

A woman with shoulder-
length wavy brown hair 
and green eyes, wearing 
a white blouse tucked 
into a high-waisted 
beige pencil skirt, 
holding a clipboard and 
smiling warmly in a 
brightly lit classroom.

Figure 2. Generating T-pose anime characters from text input also generalizes well when using public figure names as keywords.
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(Ours)
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T-pose Anime

SD-XL
T-pose Anime

Animagine-XL
T-pose Anime

Animagine-XL
T-pose AnimeImage Input

Figure 3. Generating T-pose anime characters from any pose anime image input.
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Figure 4. Generating any pose real-human image to T-pose anime image.



Image Input Our Fine-tuned LGM (w. SV3D) Original  LGM (w. SV3D) Original  LGM (w. ImageDream) 

Figure 5. With the same T-pose anime character image input, our fine-tuned LGM model shows a significant improvement in rendering
quality.



Ours wo. ICPImage Input Ours wo. ICPCharacterGen Ours w. ICP Image Input CharacterGen Ours w. ICP

Figure 6. Comparison results with CharacterGen using a single T-pose anime image as input. ”wo. ICP” denotes the results of directly
using LGM to reconstruct a single image.
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RigNet
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RigNet Ours GT Image
CharacterGen + 

RigNet
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Figure 7. We show more skeleton generation results compared with RigNet [22]. Our model can generate skeletons for clothing and
hairstyles of different styles.



Image GeoVoxel RigNet Ours GT Image Ours GTGeoVoxel RigNet

Figure 8. We show more skinning generation results compared with GeoVoxel [6] and RigNet [22].



T-pose
Anime Image Sketlon Generation Skinning Generation

A young woman in 
a red and white 
athletic outfit, with 
a high ponytail 
and a confident 
smile.

A young boy in 
pajamas with a 
teddy bear, sitting 
on a bed.

Charlie Chaplin in 
his signature 
bowler hat and 
cane, wearing a 
shabby suit, 
walking down a 
cobblestone street 
in a comedic 
stance.

A girl in a pirate 
costume, with an 
eyepatch and a 
toy parrot on her 
shoulder.

A girl in a school 
uniform with a 
navy blue skirt, a 
white shirt, and a 
red ribbon, with 
straight black hair 
tied into pigtails.

A woman in a 
white blouse and 
green pencil skirt, 
with long auburn 
hair and gold 
hoop earrings.

A man in a black 
tuxedo with a red 
bow tie, clean-
shaven with neatly 
combed hair.

A woman in a 
bright yellow 
raincoat and 
galoshes, holding 
a bouquet of 
sunflowers.

A young woman 
with long yellow 
hair wore a 
flowing blue dress 
and stepped 
barefoot on the 
grass.

A man in an 
explorer’s outfit, 
holding a map and 
looking excited.

Text Input T-pose
Anime Image Sketlon Generation Skinning GenerationText Input

Figure 9. For text input, we first generate a T-pose anime image that is semantically consistent with it, followed by the corresponding 3D
Gaussian and rigging results.

T-pose
Anime Image Sketlon Generation Skinning Generation

Any Pose
Real Human
Image Input

T-pose
Anime Image Sketlon Generation Skinning Generation

Any Pose
Real Human
Image Input

Figure 10. We generate a T-pose anime image for any pose real human image input, and we generate the corresponding 3D Gaussian and
rigging results.
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