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Nomenclature
Data

D original dataset

Ds selected subset to be watermarked

Dm modified watermarked subset

Db benign subset

Dw watermarked dataset

Df full-watermarked dataset

Dv verification set

Loss Function

Lce cross-entropy loss

Ld dispersion loss

Lver verification loss

Ltrain fine-tuning loss

Module

Gψ watermark generator

Sθ surrogate model

F suspicious model

Metric

Cw prediction consistency indices on Df

Cb prediction consistency indices on D
ΔE confidence score

Others

R iteration rounds

γ watermarking rate

β dispersion loss hyper-parameter

H entropy

A. Dataset Settings
We conduct experiments on two benchmark datasets:

CIFAR-10 [18] and a 12-class subset of ImageNet [23]. The

specific details of the datasets used in our experiments are

summarized in Tab. 7.

A.1. CIFAR-10
CIFAR-10 comprises 10 classes with a total of 50,000 train-

ing samples (5,000 images per class) and 10,000 validation

samples (1,000 images per class). Each sample is resized to

32× 32 pixels by default.

A.2. Sub-ImageNet-12
Sub-ImageNet-12 is a commonly used subset of ImageNet,

consisting of 12 classes with 12,480 training samples (1,040

images per class) and 3,120 validation samples (260 images

per class). Each sample is resized as 64× 64 by default.

dataset classes size samples

CIFAR-10 10 32×32×3 50000+10000

Sub-ImageNet 12 64×64×3 12480+3120

Table 7. Details of the datasets in our experiments.

B. Detailed Settings For EntropyMark
In this section, we detailed the settings of EntropyMark

across four phases: generator pre-training, dataset water-

marking, dataset ownership verification, and defenses.

B.1. Threat Model
Defenders (i.e., dataset owners) typically lack knowledge

of the model architecture and training components and can

only detect unauthorized use based on the model’s predic-

tion behavior. In contrast, attackers (i.e., dataset stealers)

have access to the protected dataset and can manipulate the

training model and its components.

B.2. Image Steganography Settings
We adopt the configuration established by StegaStamp [35],

utilizing a U-Net-style network as the encoder and a spatial

transformer network as the decoder. The watermark size is

set to 32× 32 for the CIFAR-10 dataset and 64× 64 for the

Sub-ImageNet-12 dataset.

During the generator pre-training phase, both the en-

coder and decoder are trained for the first 2 epochs, using



only the code reconstruction loss. This is followed by joint

training of the encoder and decoder for 20 epochs with the

full set of loss functions. The secret length is fixed at 3, with

Adam as the optimizer and an initial learning rate of 0.0001.

The scaling hyper-parameters for the code reconstruction

loss, LIPIS perceptual loss, l2 residual regularization loss,

and critic loss are 1.5, 1.5, 2.0, and 0.5, respectively.

B.3. Dataset Watermarking Settings
Algorithm 1 outlines the dataset watermarking process em-

ployed in EntropyMark. For both CIFAR-10 and Sub-

ImageNet-12, the process alternates between training the

surrogate model and fine-tuning the watermark generator

over 2 rounds. The final fine-tuned watermark generator

is then used to modify a portion of the dataset.

The surrogate model is trained for 100 epochs using the

current watermarked dataset with a batch size of 128. The

training utilizes the SGD optimizer with a momentum of 0.9

and a weight decay of 5× 10−4. The initial learning rate is

set to 0.1 and is reduced by a factor of 10 at the 50th and

80th epochs.

Fine-tuning the watermark generator also spans 100

epochs and is performed using a modified subset of the wa-

termarked dataset with a batch size of 128. The Adam op-

timizer is employed with an initial learning rate of 0.0001,

which is reduced by a factor of 10 at the 37th, 62th, and

87th epochs. All samples from the source class are des-

ignated as verification samples for gradient matching. An

8×8 black and white square is used as the trigger, randomly

attached to the verification samples.

Algorithm 1 Backdoor Watermarking

Input: Benign Dataset D, Pre-trained Watermark Generator

Gψ , Surrogate Model Sθ, Iteration Rounds R
Output:Watermarked Dataset Dw

1: Randomly initialize the watermarked sample list l
2: for i = 1, . . . , R do
3: Watermark D with Gψ according to l to get Dw.

4: Train Sθ on watermarked dataset Dw using Cross-

Entropy Loss Lce.

5: Fine-tune Gψ only on modified samples Ds using

Dispersion Loss Ld.

6: Update l according to adaptive data selection.

7: end for
8: Watermark D with Gψ according to l to get Dw.

9: return Dw

B.4. Dataset Ownership Verification Settings
We evaluate the verification effectiveness under three sce-

narios: ‘Watermark’, ‘Benign’, and ‘Other’. In the ‘Water-

mark’ scenario, the suspicious model is queried using our

patched verification samples. In the ‘Benign’ scenario, the

same verification samples are used to query a benign model.

In the ‘Other’ scenario, the suspicious model is queried with

verification samples containing different trigger patterns.

The source label is set to 0, and all test samples from

the source class are used for the hypothesis testing. The

margin τ is set to 0.005 for CIFAR-10 and -0.002 for Sub-

ImageNet-12.

B.5. Defenses Settings
We apply model pruning and fine-tuning defenses on the

CIFAR-10 dataset, as described in the main manuscript.

For the model pruning defense, the second layer of the

watermarked model is pruned using 20% of the benign

training samples. The watermark success rate (WSR) and

benign accuracy (BA) are measured at pruning rates rang-

ing from 0% to 100%, recorded at 10% increments.

For the fine-tuning defense, the convolutional layers are

frozen, and the fully connected layers of the watermarked

models are fine-tuned for 100 epochs using 10% of the be-

nign training samples. The WSR and BA are recorded every

10 epochs. This process utilizes 10% of the benign training

samples with a fixed learning rate of 0.01.

C. Watermarking Baselines Settings
We train all watermarking baselines for 200 epochs using

ResNet-18. The training is conducted with an SGD opti-

mizer, starting with an initial learning rate of 0.1, a momen-

tum of 0.9, and a weight decay of 5 × 10−4. The learning

rate is reduced by a factor of 10 at the 150th and 180th

epochs. The batch size is set to 128 for both CIFAR-10 and

Sub-ImageNet-12.

We implement BadNets, Blend, and Label Consistent us-

ing the open-source toolbox BACKDOORBOX [25]. The ex-

periments of the Sleeper Agent, UBW, and domain water-

mark are conducted using their official codes.

C.1. BadNets Settings
We use an 8 × 8 black and white square as the trigger for

both CIFAR-10 and Sub-ImageNet-12, fixed in the bottom

right corner of the original images. The target label is set to

0 by default.

C.2. Blend Settings
The random Gaussian noise is used as the trigger on CIFAR-

10 and Sub-ImageNet-12, with a blend ratio of 0.2 for both

datasets. The target label is set to 0 by default.

C.3. Label Consistent Attack Settings
We use Projected Gradient Descent (PGD) to generate ad-

versarial perturbations within the l∞ ball for preprocessing.

The number of training steps is set to 100, with a step size

of 1.5 and a maximum perturbation size of 8. Afterward,



the BadNets trigger is applied to create poisoned samples.

The target label is set to 0 and 50% of the training samples

from the target label are poisoned.

C.4. Sleeper Agent Settings
Following the original settings, we poison 1% of the train-

ing images, with each perturbation constrained within an l∞
ball of radius 16/255. During poison crafting, an Adam op-

timizer is used with an initial learning rate of 0.025, which

is reduced by a factor of 10 at the 93rd, 156th, and 218th

epochs. Poison crafting is performed over 250 epochs, with

the surrogate model retrained every 50 epochs. The target

label is set to 1 and the source label is set to 2. We se-

lect 5,000 samples from the source class of CIFAR-10 and

1,248 of Sub-ImageNet-12 as source samples, all of which

are embedded with the BadNets trigger.

C.5. UBW Settings
For UBW-P, we poison 10% of the training samples us-

ing the BadNets triggers, with the target label set to 0.

For UBW-C, we follow the poison crafting settings of the

Sleeper Agent. The non-negative trade-off hyper-parameter

of UBW-C is set to 2.0.

C.6. Domain Watermark Settings
We use the official model to test performance on CIFAR-

10 and reproduce the domain-transfer method to gener-

ate the corresponding domain-watermarked samples from

Sub-ImageNet-12. Following the original settings, we op-

timize the Upper-level Sub-problem for 50 iterations and

optimize the Lower-level Sub-problem for 100 iterations.

These domain-watermarked samples are then applied to the

official backdoor training code.

D. Discussion of Additional Parameters
D.1. Effect of Dispersion Loss Hyper-parameter
We investigate the impact of varying the dispersion loss

hyper-parameter β on EntropyMark. As shown in Tab. 8,

both WSR and BA remain largely stable across different

values of β. However, when β is too small, the loss function

exerts minimal influence on prediction confidence, making

it difficult to distinguish between benign and watermarked

models based on entropy inconsistency. This can lead to

verification failure.

D.2. Effect of Patch Size
We also examine the effects of varying patch sizes. As in-

dicated in Tab. 9, WSR increases with larger patch sizes,

while BA remains relatively stable. In addition, we observe

that as the patch size decreases, the p-value gap between the

‘Watermark’ scenario and other scenarios becomes more

pronounced. Notably, even a 2 × 2 patch can still achieve

effective verification.

β WSR (%) BA (%) Watermark Benign Other

1.0 83.02 88.56 0.9994 1.0000 0.9989

2.0 82.47 87.79 0.0017 1.0000 1.0000

3.0 82.05 88.32 0.0285 1.0000 0.9940

Table 8. The effect of trade-off parameter β.

Size WSR (%) BA (%) Watermark Benign Other

2 71.78 87.17 0.2104 1.0000 0.9948

8 82.47 87.79 0.0017 1.0000 1.0000

Table 9. The effect of patch size.
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E. Resistance to Additional Defenses
E.1. Resistance to STRIP
STRIP [6] detects backdoored samples based on the as-

sumption that a backdoored model will produce stable pre-

dictions for malicious inputs. It calculates the entropy of

prediction probabilities after randomly overlaying benign

samples onto potentially malicious inputs. For detection,

we randomly select 2,000 malicious and benign samples,

using the other 10,000 benign samples as the overlay back-

ground. As shown in Fig. 5, there is a significant overlap

in the entropy distributions of benign and malicious sam-

ples, indicating that STRIP cannot effectively distinguish

between these two types.

E.2. Resistance to Signature Spectral
Signature Spectral [37] detects malicious samples by ana-

lyzing detectable traces in the feature covariance spectrum.



It calculates feature correlations and uses the top singular

value as an outlier score for each sample. As illustrated in

Fig. 6, the distributions of outlier scores from benign and

malicious samples show significant overlap. This overlap

makes it challenging to establish a clear threshold for dif-

ferentiation, demonstrating the resistance of EntropyMark

to detection by Signature Spectral.

E.3. Resistance to CLP
Channel Lipschitzness-based Pruning (CLP) [43] is a data-

free model pruning method designed to repair backdoored

models through simple channel pruning. We implement this

defense using the official code and follow the recommended

parameter settings. As shown in Tab. 10, while CLP mit-

igates the implanted backdoor, it significantly degrades

the model’s performance on benign samples. This result

demonstrates that EntropyMark effectively resists CLP.

Dataset
Backdoored CLP Pruned

ASR(%) BA(%) ASR(%) BA(%)

CIFAR-10 82.47 87.79 48.66 55.66

Sub-ImageNet-12 66.70 71.35 47.53 53.30

Table 10. Experimental results of CLP.

E.4. Resistance to Adaptive Training
We introduce adaptive training, incorporating a negative en-

tropy constraint in the training loss to prevent over-fitting.

As shown in Tab. 11, while adaptive training reduces the

p-value gaps between the ‘Watermark’ and other scenarios,

EntropyMark still achieves successful verification.

Defense WSR (%) BA (%) Watermark Benign Other

Adaptive Training 89.54 92.51 −0.45 0.3323 1.0000 0.9934

Adaptive Training + 88.96 92.61−0.35 0.4293 1.0000 0.6285

Table 11. Resistance to adaptive training. ‘+’ indicates a stronger

negative entropy constraint. The decline in BA compared to clean

models is highlighted in red.

F. Resistance to Data Augmentation
Dataset stealers often use various data augmentation meth-

ods during model training, making it crucial to verify the re-

silience of EntropyMark against strong data augmentations.

Specifically, we evaluate two common data augmentation

strategies: random cropping and center cropping. For ran-

dom cropping, images are resized to 40 × 40 and then ran-

domly cropped to 32×32 with a 4-pixel padding. For center

cropping, images are resized to 36×36 and then cropped to

32× 32 with a 2-pixel padding.

As shown in Tab. 12, while WSR decreases when these

augmentation methods are applied, EntropyMark remains

effective for dataset ownership verification. However, data

augmentation does have some impact on verification effec-

tiveness, which we identify as a key area for future research.

Cropping WSR (%) BA (%) Watermark Benign Other

Random 79.32 85.39 0.4933 0.6059 0.7213

Center 68.54 88.17 0.1651 1.0000 0.7537

Table 12. The effect of trade-off parameter β.

G. Stealthiness Evaluation
We adopt PSNR, l∞ norm, and FID [13] to quantitatively

evaluate the stealthiness of different backdoor watermarks.

Peak Signal-to-Noise Ratio (PSNR) is calculated based on

mean squared error and assesses the quality difference be-

tween the original and modified images. A higher PSNR

value indicates better image quality and less distortion. The

l∞ norm, commonly used in image processing, measures

the maximum pixel difference between two images. Fréchet

Inception Distance (FID) evaluates the differences between

the mean and covariance of the feature representations of

modified and original images, typically extracted using a

pre-trained Inception-v3 [34] model. FID better captures

the structural information of images, providing a more ac-

curate reflection of image quality. As shown in Tab. 13,

EntropyMark outperforms all other methods across all met-

rics, demonstrating its superior stealthiness.

Metric → PSNR (dB) l∞ norm FID

BadNets 26.7323 227.1596 2.6498

Blend 22.9924 62.1561 215.1331

EntropyMark 38.9022 24.9548 2.0589

Table 13. Stealthiness evaluation results.

H. Limitation
We propose a novel BW-DOV method that leverages higher

prediction confidence as a signal for dataset usage detection.

However, the current method has several limitations:

Over-reliance on verification samples: EntropyMark

computes reference gradients using verification samples

and employs them in gradient matching. Therefore, the ver-

ification effectiveness largely depends on the selection of

verification samples.

Limited validation reliability: Compared to most dirty-

label BW-DOV methods, EntropyMark exhibits a more nar-

row p-value gap between the ’Watermark’ scenario and

other scenarios, suggesting reduced verification reliability.

Only supports probability-based verification: The cur-

rent method is limited to probability-based verification. En-



tropyMark, designed to be more harmless without affecting

predictions, follows the same approach.

These issues will be addressed in future research, with a

focus on improving verification reliability, reducing depen-

dency on sample selection, and exploring label-only veri-

fication. These improvements aim to enhance the overall

robustness and effectiveness of the method.

I. Social Impact
This paper addresses the challenge of protecting open-

source datasets. While existing methods aim to mitigate

the targeted nature of backdoors, they often compromise

dataset functionality by altering the original prediction re-

sults of watermarked models. In contrast, EntropyMark of-

fers a higher degree of harmlessness, maintaining dataset

utility. In addition, EntropyMark provides high stealthiness

and effectively bypasses most existing defenses, making it

particularly well-suited for real-world protection scenarios.

Nevertheless, dataset stealers may develop sophisticated

techniques to counteract our BW-DOV method. Future

research should focus on monitoring emerging defensive

strategies and refining our approach to ensure continued ef-

fectiveness in protecting open-source datasets.


