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1. More Experimental Results

In main paper Table 3, we omit some prediction errors at
certain timestamps and running time of CMU-Mocap [2]
and 3DPW [6] due to limited space. Here, we provide the
complete results of LTD [4], STS [5] and SPGSN [3] with
LAL-TL in Table 1 and 2.

CMU-Mocap average
millisecond 80 160 320 400 1000

running
time (ms)

LTD [4] 9.9 18.0 33.6 41.0 81.9 39.29
LTD-LAL-1 9.3 17.4 32.1 39.8 81.8 39.20
LTD-LAL-2 - 16.7 30.9 39.2 80.7 39.04
LTD-LAL-3 - 15.6 29.4 38.5 79.7 38.93
LTD-LAL-4 - - 28.7 38.3 78.4 38.87
LTD-LAL-5 - - 28.1 37.8 76.5 38.74

STS [5] 10.8 18.2 31.2 41.1 81.8 30.44
STS-LAL-1 11.4 17.9 30.5 41.4 81.3 30.39
STS-LAL-2 - 16.8 28.4 39.5 80.7 30.30
STS-LAL-3 - 15.3 28.0 37.2 79.1 30.18
STS-LAL-4 - - 27.2 37.6 76.2 30.12
STS-LAL-5 - - 26.7 36.9 75.8 30.06

SPGSN [3] 8.3 14.8 28.6 37.0 77.8 49.37
SPGSN-LAL-2 - 13.4 27.1 35.7 76.8 49.29
SPGSN-LAL-3 - 12.5 25.8 34.9 75.1 49.26
SPGSN-LAL-4 - - 25.1 34.8 74.9 49.12
SPGSN-LAL-5 - - 24.5 33.9 74.2 49.08

Table 1. Comparisons of MPJPE average errors in CMU-Mocap,
where TL = 1, 2, 3, 4, 5. Our LAL helps achieve progress without
extra time cost during testing.

Similar to main paper Table 2 and 3, there is no LTD-
LAL-1 for 3DPW, also no SPGSN-LAL-1 for CMU-Mocap
and 3DPW, as their running time has already exceeded the
maximum latency duration that it supports. Note that the
sampling rate of 3DPW differs from the other two datasets,
so the timestamps appear different (but we keep aligned
with baselines to ensure fair comparison). Overall, LAL
achieves improved results over baselines constantly, with-
out the need for extra time cost during testing, which shows
both the effectiveness and efficiency of our latency-aware
prediction manner.

3DPW Average
millisecond 200 400 500 800 1000

running
time (ms)

LTD [4] 35.6 67.5 80.2 106.8 117.8 41.66
LTD-LAL-2 34.3 65.1 78.8 106.6 116.4 41.50
LTD-LAL-3 33.1 65.0 77.0 104.8 115.3 41.44
LTD-LAL-4 31.7 63.8 76.8 103.1 113.7 41.29
LTD-LAL-5 31.2 62.3 75.9 101.0 110.8 41.20

STS [5] 37.8 67.5 77.3 106.7 112.2 31.84
STS-LAL-1 37.2 66.8 76.5 108.4 111.4 31.76
STS-LAL-2 36.0 65.4 76.4 105.1 110.8 31.75
STS-LAL-3 33.8 64.8 75.3 103.6 109.0 31.64
STS-LAL-4 33.4 63.0 74.7 102.8 107.6 31.55
STS-LAL-5 34.6 61.9 73.1 101.6 106.6 31.43

SPGSN [3] 32.9 64.5 76.2 104.0 111.1 50.61
SPGSN-LAL-2 30.9 63.1 75.6 103.4 109.3 50.46
SPGSN-LAL-3 30.6 61.2 74.3 101.7 107.8 50.39
SPGSN-LAL-4 28.4 59.4 72.8 100.1 106.9 50.35
SPGSN-LAL-5 27.1 58.9 71.3 99.8 106.3 50.28

Table 2. Comparisons of MPJPE average errors in 3DPW. The
results and time consumption appear similar trend as in Table 1.

2. Ablation Experiments

2.1. Training loss hyper-parameters
In main paper Figure 8, we show different (λP , λA) set-
tings of Eq. (4), with STS [5] as the compared baseline and
TL = 3. Here, we provide the corresponding ablation with
baseline LTD [4] and SPGSN [3] in Figure 1, and the im-
provement is most significant when (λP = 1.0, λA = 1.0)
for both of them. Note that these experiments are all con-
ducted on Human3.6M [1], and the hyper-parameter setting
remain the same for each dataset and each TL value.

2.2. Ablations on refinement step
Refinement loss hyper-parameters. We provide the re-
sults of different (λZ , λU ) weight settings in our main pa-
per refinement loss Eq. (6). As shown in Figure 2 (left and
middle), all of them can bring benefits more or less. We se-
lect λZ = 1.0, λU = 1.0, and maintain this setting for all
baselines in our experiments.
Why not merge the refinement loss into main training.
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Figure 1. Results of different (λP , λA) settings of Eq. (4) in LTD-LAL-3 (left) and SPGSN-LAL-3 (right). The best is achieved when
λP = 1.0, λA = 1.0, drawn in dashed blue line.
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Figure 2. Left and middle: results of different (λZ , λU ) settings in Eq. (6) for LTD-LAL-3. Left subfigure shows errors at 400 ms, while
middle shows 1000 ms. We set λZ = 1.0, λU = 1.0 that yields constant improvement. Right: merging refinement loss into LAL as an
end-to-end training manner, showing no improvement compared to baselines. Dark colors indicate 400 ms errors while faded 1000 ms.

As we treat the refinement as an optional post-processing
step, we should validate the effectiveness of using such sep-
arate training rather than end-to-end manner. We merge the
feature statistics-based alignment loss into our main train-
ing, which let the primary prediction branch approximate
the distribution of the auxiliary latent and final outputs from
scratch, i.e., directly involving Lfea,Z and Lfea,U into our
LAL. However, the auxiliary branch at the beginning is not
well-trained that tends to generate wrong patterns of outputs
(especially the final output U ), which may confuse the pri-
mary branch whether to fit towards the ground truth or the
unstable auxiliary outputs. The results are shown in Figure
2 (right) purple bars, with no improvement and even higher
errors than baselines, which verifies the above reasoning.

Limitations. In real-world scenarios, the intelligent sys-
tem may confront incomplete observations due to the oc-
clusion of human body or noise perturbation, which greatly
impedes the prediction accuracy. Improving algorithm ro-
bustness against these factors is a worthy study that will
further contribute to this task.
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