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1. Overview

In this supplementary material, we provide the details
of the loss function and additional experiments. In Sec. 2,
the geometric constraints based on Sampson Distance are
derived. In Sec. 3, we demonstrate the performance of our
method on datasets with large viewpoint changes. In Sec. 4,
we demonstrate that the affine correspondences obtained by
our method lead to improved relative pose accuracy com-
pared with methods obtaining point correspondences on the
indoor dataset. In Sec. 5, we show the failed cases.

2. Details of Sampson Distance for Geometric
Constraints

Sampson Distance was originally introduced for conic
fitting. The method finds the refined parameters that reduce
the overall fitting errors iteratively [18]. Recently, Sampson
Distance has also been used to model the measurement resid-
uals of the correspondences between two views in computer
vision [6]. It can be regarded as a first-order approximation
of geometric error and offers an efficient and effective al-
ternative to traditional error metrics. Characterized by its
reduced computational complexity, it provides an estimate
of error that is comparable in accuracy to the geometrical
error [18]. In previous work, Zhou et al. [19] proposed that
how much a match prediction fulfills the epipolar geome-
try can be precisely measured by the Sampson distance. In
this paper, A novel affine transformation loss, represented
by the Affine Sampson Distance, is introduced to further
enhance the conformity of affine correspondences with the
scene geometry. Given an AC satisfying GE(X̂) = 0, where
GE(X) is the geometric constraint approximated by a Taylor
expansion:

GE (X + δX) ≈ GE(X) +
∂GE

∂X
δX , (1)

δX quantifies the measurement residual. Letting

J =
∂GE

∂X
, (2)

ϵ = GE(X)−GE(X̂), (3)

namely,

JδX = −ϵ, (4)

the goal is to find δX that minimizes ∥δX∥ subject to
Eq. 1. The problem can be solved by Lagrange Multipliers
and the Sampson Distance is defined as the squared norm of
δX .

∥δX∥2 = ϵT
(
JJT

)−1
ϵ. (5)

For the epipolar constraints,

GE(X) = pT2 Fp1. (6)

We take partial derivatives of x1, y1, x2, y2. Let Z0 =
G(X). The remaining terms are Z1 = ∂Z0

∂x1
, Z2 = ∂Z0

∂y1
,

Z3 = ∂Z0

∂x2
, Z4 = ∂Z0

∂y2
, we can obtain Eq. 7.

SDP (EPC) =
Z2
0

Z2
1 + Z2

2 + Z2
3 + Z2

4

, (7)

where

Z0 = x1(f31 + f11x2 + f21y2) + y1(f32+
f12x2 + f22y2) + f13x2 + f23y2 + f33,
Z1 = f31 + f11x2 + f21y2,
Z2 = f32 + f12x2 + f22y2,
Z3 = f13 + f11x1 + f12y1,
Z4 = f23 + f22y1 + f21x1,

(8)

the fij , (i, j ∈ {1, 2, 3}) is an element in the fundamental
matrix. The affine transformation constraints is as follows:

SDA (EAC)(1:2) = SDA

(
A−T

(
FT p2

)
(1:2)

+ (Fp1)(1:2)

)
.

(9)
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(a) ASIFT (b) VLFeat (c) AffNet (d) Ours

Figure 1. The image matching results in the Extreme View Dataset [9]. Our method could finds the highest number of correct matches.

When G(X) is the constraint on the first row in Eq. 9 in the
paper. We take partial derivatives of x1. . .a22. Let M0 =
G(X). The remaining terms are M1 = ∂M0

∂a11
, M2 = ∂M0

∂y1
,

M3 = ∂M0

∂x2
, M4 = ∂M0

∂a21
, M5 = ∂M0

∂x1
, M6 = ∂M0

∂y2
. The first

one can be formulated as follows:

SDA(EAC)(1) =
M2

0

M2
1 +M2

2 +M2
3 +M2

4 +M2
5 +M2

6

,

(10)

where



M0 = x1(a11f11 + a21f21) + y1(a11f12 + a21f22)
+a11f13 + a21f23 + f11x2 + f21y2 + f31,
M1 = f13 + f11x1 + f12y1,
M2 = a11f12 + a21f22,
M3 = f11,
M4 = f23 + f21x1 + f22y1,
M5 = a11f11 + a21f21,
M6 = f21,

(11)



(a) VLFeat (b) AffNet (c) ASIFT (d) Ours
Figure 2. Failure modes. Other methods also fail.

Similarly, the second one is formulated as

SDA(EAC)(2) =
N2

0

N2
1 +N2

2 +N2
3 +N2

4 +N2
5 +N2

6

,

(12)

where

N0 = x1(a12f11 + a22f21) + y1(a12f12 + a22f22)
+a12f13 + a22f23 + f12x2 + f22y2 + f32,
N1 = f13 + f11x1 + f12y1,
N2 = a12f11 + a22f21,
N3 = f12,
N4 = f23 + f21x1 + f22y1,
N5 = a12f12 + a22f22,
N6 = f22,

(13)

3. Image Matching on EVD
Affine features are beneficial for matching images with

large viewpoint changes because they utilize further geo-
metric information compared to their point-based counter-
parts. We now show additional results on the Extreme View
dataset [10], whose average viewpoint change is substan-
tially larger than that of the HPatches dataset [1]. The dataset
with the ground truth is available on the web-page1.
Evaluation protocol. We compare the proposed method
with the view-synthesis-based Affine-SIFT (ASIFT) [13],
the VLFeat library [17], and the learning-based AffNet [12].
Following the protocol [12], we report the number of suc-
cessfully matched image pairs and the average number of
correct inliers per matched pair.
Results. The average inlier numbers and the number of suc-
cessfully matched image pairs are shown in Table 1. Exam-
ple results are shown in the Fig. 1. Only the correct matches
are displayed. Our method has a significant advantage in
terms of matching quantity at the same pixel error threshold.
1http://cmp.felk.cvut.cz/wbs/index.html

Benefiting from the use of dense matching, and through the
estimation of affine features, our method obtains more ac-
curate matches in the case of large viewpoint change. This
experiment demonstrates that our method is more robust than
other affine-based ones to large viewpoint changes. This sig-
nifies that the affine correspondences we extract are of better
quality. This can be attributed to our pipeline design for
affine correspondence extraction, leveraging a combination
of geometric constraints.

Table 1. The comparison of affine extractors on a wide baseline
stereo dataset EVD [9] following the protocol in [11]. The number
of successfully matched image pairs (N) and the average number
of correct inliers (inl.) are presented. The best result is in bold.

VLFeat [17] AffNet [12] ASIFT [13] Ours
N. 2 4 2 111111
inl. 56 34 64 137137137

4. Relative Pose Estimation on ScanNet-1500

The ScanNet [5] is a large-scale indoor dataset that is used
to target the task of indoor pose estimation. This dataset is
challenging since it contains image pairs with wide baselines
and extensive texture-less regions. We follow the evaluation
in SuperGlue [14].
Evaluation protocol. Following [14] and [15], we report
the AUC of the pose error at thresholds (5◦, 10◦, 20◦ ). To
compare with existing methods on the same baseline, we
utilize RANSAC as implemented in the OpenCV library
to solve for the essential matrix from predicted matches as
previous methods do [15]. To demonstrate that the estimated
affine frames are beneficial for pose estimation, we also run
the affine correspondence-based Graph-Cut RANSAC [2, 3],
designed specifically to leverage affine shapes together with
the point locations.
Result. As shown in Table 2, the proposed method with



Table 2. Relative pose Accuracy Under the recall Curve (AUC;
higher is better) thresholded at 5◦, 10◦, and 20◦ on the ScanNet-
1500 [5]. All methods run RANSAC-based essential matrix es-
timation, except for the last row, where we run the affine-based
GC-RANSAC [2, 3], benefiting from the affine correspondences
that we obtain.The best results are in bold.

AUC@ → 5◦ ↑ 10◦ ↑ 20◦ ↑
LoFTR [15] CV PR21 22.1 40.8 57.6
ASpanFormer [4] ECCV 22 25.6 46.0 63.3
PDC-Net+ [16] TPAMI23 20.3 39.4 57.1
DKM [7] CV PR23 29.4 50.7 68.3
RoMA[8] CV PR24 31.8 53.4 70.9
Ours(RANSAC) 30.7 51.7 69.0
Ours(aff. GC-RANSAC) 33.133.133.1 55.955.955.9 73.473.473.4

RANSAC achieves good results. When leveraging the es-
timated affine shapes with GC-RANSAC, the proposed
method achieves the best performance.

5. Failed Cases
Fig. 2 shows the failure cases caused by significant view-

point changes and large scale variations. However, all other
tested baselines fail in these cases.
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