
Learning Compatible Multi-Prize Subnetworks for Asymmetric Retrieval

Supplementary Material

A. Additional details of weight inheritance

We briefly present our preliminary experiment in the main
manuscript. Herein we provide more details and analyses.
We perform pruning with the edge-popup algorithm on an
8-layer convolutional network following [10]. Specifically,
we attach a learnable score to each randomly initialized
weight of the network, keeping the weight frozen while up-
dating the score to discover a good subnetwork during train-
ing. We explore two pruning strategies, One-shot Pruning
(OSP) and Iterative Pruning (IP) in our preliminary exper-
iment. OSP proposed in [10] is employed as the control
group, and IP is introduced to investigate the weight inheri-
tance nature of multi-prize subnetworks.

As presented in [10], the subnetwork discovered by OSP
at a capacity of 50% achieves the best performance among
all the subnetworks with various capacities. Thus, we begin
with a subnetwork at the capacity of 50% to perform iter-
ative pruning. For example, we identify a well-performing
40%-subnetwork from the 50%-subnetwork and repeat this
process in a greedy pruning manner to progressively obtain
subnetworks of varying capacities. As illustrated in Figure
2 in the main manuscript, the subnetworks identified by IP
outperform those obtained by OSP. It empirically demon-
strates that small-capacity prize subnetwork can be obtained
by selectively inheriting weights from a large-capacity prize
subnetwork, rather than searching for it within the entire
dense network.

For the rationale behind the weight inheritance nature,
we speculate that connections within a network exhibit
varying degrees of importance. Integrating a set of critical
connections is essential for identifying a well-performing
subnetwork. The performance of a highly sparse subnet-
work can be enhanced by adding an appropriate number of
connections until redundancy arises. Furthermore, when at-
tempting to directly identify a highly sparse subnetwork us-
ing the OSP method, critical connections are often excluded
prematurely during the early training stages due to incom-
plete convergence of the learned scores. This explains why
OSP tends to be less effective than the IP approach for iden-
tifying sparse subnetworks.

B. Additional implementation details

Training setup. We train the proposed models on two
NVIDIA GeForce RTX 3090 GPUs with a batch size of
64, following the training protocols established by previous
studies [4, 8, 19] on various benchmarks. On GLDv2 [15],
we train Convolutional Neural Networks (CNNs), includ-

Algorithm 1: Training process of our method
Require: Batch input B, the dense model ϕ0, model

parameters θ, N capacity factors {ci}Ni=1;
// Backward propagation

1 g0 ← ∂L0(ϕ0,B)
∂ϕ0

;
2 for ci ∈ {ci}Ni=1 do
3 ϕi ← GetSubmodel(ϕ0, ci);
4 gi ← ∂Li(ϕi,B)

∂ϕi
;

5 end
6 G,Gori ← {g0, g1, ..., gN};

// Conflict-aware gradient integration
7 for gi ∈ G do
8 G′ ← Shuffle(G);
9 for gj ∈ G′ do

10 if gi · gj < 0 then
11 gi ← gi − gi·gj

∥gj∥2 gj ;
12 end
13 end
14 end

// Calculate the cosine similarities
15 for ĝi, gk ∈ G,Gori do
16 γi ← ⟨gk, ĝi⟩α;
17 end
18 g̃ ←

∑ γiĝi∑
γi
(N + 1) ;

19 return Update ϕ0 by ∆θ = g̃

ing ResNet [3], MobileNet-V2 [11], and ResNeXt [18], for
30 epochs using the Stochastic Gradient Descent (SGD)
optimizer with a base learning rate of 0.1, milestones at
epochs [5, 10, 20], and a weight decay of 5e-4. For ViT-
Small [2], we use the AdamW optimizer, training for 30
epochs with a base learning rate of 3e-5 and a cosine de-
cay scheduler with three epochs of linear warm-up. On the
In-shop dataset [7], we optimize ResNet-18 for 200 epochs
with SGD, a base learning rate of 0.1, milestones at [50,
100, 150], and a weight decay of 5e-4. On VeRi-776 [6],
ResNet-18 is trained using SGD for 60 epochs with a base
learning rate of 0.01, employing a Cosine Annealing Learn-
ing Rate Scheduler after the 30-th epoch.

Adaptive BatchNorm. We provide a detailed explana-
tion of Adaptive BatchNorm [5], which is employed to ad-
dress the significant discrepancy in the mean and variance
of Batch Normalization (BN) layers across subnetworks of
different capacities. Specifically, we set the network to
training mode, freeze all learnable parameters, reset the



N N N N N

Figure A. Performance of our PrunNet when different numbers of pre-defined subnetworks are used for modeling training. We show the
average mAP of RParis [9], ROxford [9], and GLDv2-test [15]. The cross-test values at 100% capacity are identical to those of the self-test.

α α α α α

Figure B. Performance across different values of α in Eq. (5) in the main manuscript. We show the average mAP of RParis [9], ROxford [9],
and GLDv2-test [15]. The cross-test values at 100% capacity are identical to those of the self-test. When α is set to 0, our method is
simplified to direct gradient integration after projection.

0 1,g g 0 2,g g 0 3,g g 0 4,g g

Figure C. Cosine similarities between the gradient vectors of a single convolutional kernel in the dense network and each subnetwork when
training PrunNet on GLDv2 [15]. ResNet-18 is used as the backbone. Herein g0 denotes the gradient vector of a convolutional kernel of
the dense network, while g1, g2, g3, and g4 represent those of the subnetworks ϕ80%, ϕ60%, ϕ40%, and ϕ20%, respectively. ⟨·, ·⟩ denotes
the cosine similarity. The gradient vector of each subnetwork conflicts with that of the dense network at the beginning of the training.
As training progresses, negative cosine similarities in our method occur only occasionally. In contrast, the subnetworks trained with the
BCT-S method encounter negative cosine similarities more frequently.

0 1 2 3 4

Figure D. Loss convergence curves when training PrunNet with our method and BCT-S on GLDv2 [15]. L0 denotes the loss of dense
network ϕ0, L1, L2, L3, and L4 denote the loss of the subnetworks ϕ80%, ϕ60%, ϕ40%, and ϕ20%, respectively. ResNet-18 is used as the
backbone. The loss for both methods declines sharply at the beginning. However, as training progresses, BCT-S struggles to further reduce
the losses of subnetworks. In contrast, the losses of all networks remain consistent and converge to lower values when using our method.



Table A. Detailed comparisons on pre-determined capacities over RParis [9], ROxford [9] and GLDv2-test [15]. ResNet-18 is used as the
backbone. ϕ0 denotes the dense network. The numerical subscript of a small-capacity (sub)network represents its capacity.

ϕq

ϕg ϕ0 ϕ80% ϕ60% ϕ40% ϕ20% ϕ0 ϕ80% ϕ60% ϕ40% ϕ20% ϕ0 ϕ80% ϕ60% ϕ40% ϕ20%

RParis

Independent learning Joint learning O2O-SSPL

ϕ0 73.35 – – – – 71.58 70.94 70.72 69.88 69.11 73.35 71.94 71.50 71.08 69.40
ϕ80% – 71.84 – – – 71.53 71.50 71.08 70.14 69.49 72.16 70.71 70.19 69.85 68.25
ϕ60% – – 70.71 – – 71.22 70.66 70.75 70.58 69.69 71.91 70.58 70.26 69.74 68.26
ϕ40% – – – 70.37 – 70.65 70.28 70.10 69.28 68.56 71.96 70.59 70.18 69.89 68.14
ϕ20% – – – – 67.77 70.79 70.24 70.05 68.80 68.80 70.19 68.94 68.32 68.14 66.72

BCT-S w/ SwitchNet Asymmetric-S w/ SwitchNet SFSC

ϕ0 69.51 69.30 69.07 68.66 67.77 72.36 57.82 55.61 55.05 52.32 71.03 71.01 70.90 70.51 69.46
ϕ80% 69.37 69.14 68.91 68.55 67.66 56.49 52.21 47.94 47.13 43.39 71.19 71.19 71.06 70.67 69.62
ϕ60% 69.17 68.96 68.77 68.43 67.53 55.50 48.80 49.57 47.08 43.46 71.09 71.08 71.03 70.65 69.53
ϕ40% 68.92 68.71 68.45 68.21 67.44 54.42 47.98 46.83 48.80 44.52 70.18 70.16 70.15 69.81 68.64
ϕ20% 68.20 68.00 67.82 67.56 66.92 52.62 45.15 44.36 45.71 45.64 69.58 69.62 69.55 69.23 68.17

BCT-S w/ PrunNet Asymmetric-S w/ PrunNet Ours

ϕ0 69.98 69.98 69.98 69.98 69.90 72.36 72.36 72.52 71.56 69.94 74.60 74.59 74.57 74.53 74.38
ϕ80% 69.89 70.02 69.98 69.98 69.89 72.34 72.36 72.50 71.55 69.97 74.62 74.62 74.60 74.55 74.40
ϕ60% 69.98 69.98 70.01 69.98 69.90 72.17 72.16 72.29 71.37 69.70 74.65 74.64 74.61 74.58 74.44
ϕ40% 70.01 70.01 70.01 70.02 69.94 71.27 71.26 71.36 70.53 68.99 74.53 74.52 74.50 74.47 74.31
ϕ20% 69.94 69.94 69.94 69.94 69.88 70.00 70.01 70.07 69.33 68.51 74.35 74.35 74.31 74.28 74.18

ROXford

Independent learning Joint learning O2O-SSPL

ϕ0 52.28 – – – – 50.23 50.02 50.28 48.34 48.67 52.28 49.24 49.48 48.61 46.29
ϕ80% – 51.94 – – – 48.57 49.47 49.28 47.46 48.03 50.51 46.20 47.49 46.73 44.40
ϕ60% – – 51.00 – – 48.97 49.51 50.17 47.90 48.61 50.15 45.67 47.44 46.10 43.82
ϕ40% – – – 50.26 – 48.15 49.10 49.70 48.69 47.49 49.64 46.71 46.85 46.34 43.93
ϕ20% – – – – 49.32 48.20 48.59 49.90 46.76 48.30 48.82 44.66 46.14 44.48 43.98

BCT-S w/ SwitchNet Asymmetric-S w/ SwitchNet SFSC

ϕ0 52.51 52.75 52.02 50.89 48.97 51.90 36.31 36.37 36.97 32.67 52.59 52.40 51.71 50.86 49.35
ϕ80% 52.49 53.51 52.98 50.66 48.79 40.36 34.69 29.60 30.26 26.99 52.31 51.96 51.37 50.90 49.30
ϕ60% 52.60 53.16 52.82 50.22 48.11 39.62 31.46 32.80 30.40 27.75 51.24 51.77 51.67 51.17 49.65
ϕ40% 51.47 51.46 51.46 51.08 51.28 37.98 30.83 31.05 33.28 28.22 51.74 51.48 51.22 50.36 48.83
ϕ20% 50.67 50.57 50.73 49.00 46.97 37.30 28.28 29.83 31.54 29.60 50.98 50.94 50.44 49.77 48.12

BCT-S w/ PrunNet Asymmetric-S w/ PrunNet Ours

ϕ0 51.54 51.53 51.54 51.14 51.31 51.80 51.88 51.60 51.29 49.28 52.69 52.68 52.73 52.68 52.38
ϕ80% 51.54 51.54 51.57 51.14 51.30 52.25 52.33 52.12 51.43 49.21 52.67 52.66 52.64 52.64 52.38
ϕ60% 51.55 51.54 51.51 51.13 51.28 51.21 51.28 51.35 51.07 48.66 52.59 52.61 52.59 52.65 52.43
ϕ40% 51.47 51.46 51.46 51.08 51.28 50.78 50.80 50.83 49.64 48.43 51.99 51.99 51.91 51.95 51.76
ϕ20% 51.27 51.28 51.26 51.13 51.29 49.52 50.10 49.78 49.40 47.34 51.19 51.22 51.27 51.63 51.49

GLDv2-test

Independent learning Joint learning O2O-SSPL

ϕ0 10.59 – – – – 10.02 9.70 9.31 8.85 8.92 10.59 9.92 10.00 9.86 9.23
ϕ80% – 10.39 – – – 9.72 9.95 9.30 8.82 9.01 9.94 9.60 9.62 9.47 8.84
ϕ60% – – 9.94 – – 9.55 9.54 9.59 8.85 8.98 9.72 9.30 9.58 9.30 8.67
ϕ40% – – – 9.58 – 9.28 9.00 8.72 8.74 8.47 9.29 8.96 8.97 9.07 8.36
ϕ20% – – – – 8.23 8.74 8.71 8.13 8.01 8.47 8.77 8.55 8.61 8.64 8.38

BCT-S w/ SwitchNet Asymmetric-S w/ SwitchNet SFSC

ϕ0 9.29 9.20 9.03 8.85 8.58 11.00 5.21 5.01 5.10 3.64 9.79 9.75 9.43 9.25 8.54
ϕ80% 9.22 9.19 9.04 8.84 8.55 4.32 4.26 3.20 2.87 2.11 9.70 9.69 9.28 9.08 8.50
ϕ60% 9.08 9.03 8.99 8.79 8.53 3.86 2.96 3.87 2.93 2.00 9.48 9.38 9.04 8.91 8.38
ϕ40% 8.84 8.79 8.75 8.74 8.43 3.48 2.59 2.74 3.42 2.10 9.08 9.07 8.80 8.78 8.30
ϕ20% 8.12 8.15 8.11 8.10 8.22 2.63 2.06 2.07 2.42 2.55 8.45 8.35 8.14 8.05 8.00

BCT-S w/ PrunNet Asymmetric-S w/ PrunNet Ours

ϕ0 9.59 9.60 9.63 9.62 9.56 11.36 11.38 11.15 10.72 9.61 11.59 11.60 11.60 11.60 11.48
ϕ80% 9.61 9.61 9.63 9.62 9.56 11.32 11.51 11.18 10.72 9.63 11.57 11.59 11.60 11.59 11.44
ϕ60% 9.60 9.61 9.62 9.63 9.59 11.13 11.23 11.01 10.71 9.55 11.54 11.54 11.56 11.55 11.37
ϕ40% 9.64 9.65 9.65 9.67 9.59 10.34 10.38 10.57 10.40 9.39 11.41 11.45 11.43 11.49 11.38
ϕ20% 9.55 9.55 9.55 9.57 9.53 9.02 9.20 9.30 9.19 8.89 11.30 11.32 11.30 11.30 11.22



Table B. Detailed comparisons on pre-determined capacities over RParis [9], ROxford [9] and GLDv2-test [15] using different backbones.

M(ϕ0, ϕ0) M(ϕ80%, ϕ80%) M(ϕ80%, ϕ0) M(ϕ60%, ϕ60%) M(ϕ60%, ϕ0) M(ϕ40%, ϕ40%) M(ϕ40%, ϕ0) M(ϕ20%, ϕ20%) M(ϕ20%, ϕ0)

Self-test Self-test Cross-test Self-test Cross-test Self-test Cross-test Self-test Cross-test

RParis

ResNet-50
Independent learning 74.33 73.94 – 73.75 – 73.44 – 72.82 –
SFSC 74.59 74.48 74.52 74.32 74.43 74.25 74.36 73.61 74.04
Ours 75.05 75.01 75.02 74.95 74.96 74.90 74.91 74.78 74.93

ResNeXt-50
Independent learning 75.22 75.03 – 74.63 – 73.77 – 70.71 –
SFSC 74.92 73.80 73.78 73.67 73.71 72.50 73.16 71.22 73.08
Ours 76.03 75.97 75.97 75.94 75.90 75.77 75.80 75.07 75.36

MobileNet-V2
Independent learning 66.60 65.76 – 65.05 – 64.51 – 63.68 –
SFSC 66.38 65.91 66.10 65.75 66.08 65.27 65.81 63.83 65.09
Ours 67.15 67.10 67.08 66.95 67.05 66.53 66.84 64.57 66.01

ViT-Small
Independent learning 80.81 73.40 – 70.87 – 64.61 – 52.93 –
SFSC 77.37 74.42 75.28 70.72 73.02 68.66 72.76 55.15 63.83
Ours 82.00 80.99 81.22 80.54 80.72 77.74 78.73 72.22 74.24

ROxford

ResNet-50
Independent learning 54.70 54.56 – 54.14 – 54.20 – 50.90 –
SFSC 53.84 53.75 53.73 53.35 53.62 53.22 53.26 52.88 53.19
Ours 56.12 55.81 55.97 55.71 55.98 55.38 55.84 54.69 55.52

ResNeXt-50
Independent learning 55.38 53.73 – 52.61 – 52.16 – 50.87 –
SFSC 54.57 54.06 53.52 53.06 53.09 52.40 53.21 50.31 52.40
Ours 57.63 57.73 57.75 57.82 57.76 58.27 57.96 56.73 57.45

MobileNet-V2
Independent learning 46.60 45.91 – 45.62 – 44.39 – 43.88 –
SFSC 46.84 45.64 45.07 46.44 46.56 45.51 46.07 43.22 43.90
Ours 47.63 47.88 47.64 48.09 47.83 47.17 47.55 45.20 46.71

ViT-Small
Independent learning 59.88 54.45 – 46.41 – 37.22 – 28.58 –
SFSC 56.10 52.25 54.98 48.24 54.68 43.60 48.68 31.05 37.85
Ours 60.11 55.36 55.46 54.84 56.01 52.24 52.70 43.96 46.50

GLDv2-test

ResNet-50
Independent learning 12.15 12.03 – 11.52 – 11.38 – 10.50 –
SFSC 10.84 10.89 11.01 10.91 11.02 10.86 10.90 9.96 10.30
Ours 12.46 12.41 12.38 12.49 12.43 12.46 12.45 12.18 12.39

ResNeXt-50
Independent learning 12.92 11.95 – 11.54 – 11.41 – 10.05 –
SFSC 11.77 11.23 11.42 10.83 11.14 10.43 10.86 9.19 9.99
Ours 13.03 13.05 13.01 13.11 13.02 12.98 12.99 12.84 12.92

MobileNet-V2
Independent learning 8.38 7.94 – 7.65 – 6.65 – 6.30 –
SFSC 7.50 7.42 7.56 7.31 7.26 6.78 7.03 6.23 6.48
Ours 8.80 8.82 8.82 8.83 8.78 8.47 8.70 7.13 7.77

ViT-Small
Independent learning 15.03 12.28 – 8.89 – 5.43 – 2.96 –
SFSC 13.40 11.01 11.90 9.71 10.68 6.89 8.19 3.33 4.35
Ours 15.06 13.96 14.26 14.01 14.29 12.18 12.71 7.45 9.47

pruning level

m
A

P 
(%

)

0φ 25%φ 6.25%φ56.25%φ
Market-1501 MSMT17

Figure E. Feature distributions of different capacities of subnet-
works on Market-1501 and MSMT17 datasets visualized with t-
SNE. Herein we randomly sample ten different persons on each
dataset. We can observe that the feature distributions of subnet-
works are aligned with that of the dense network, validating the
compatibility among subnetworks.

mean and variance of BN layers to zero, and perform for-
ward propagation using a subset of the training dataset to

compute the updated statistics after training. The amounts
of data used for Adaptive BatchNorm are as follows: for
GLDv2, 1/30 of the training dataset is utilized, while for
InShop and VeRi-776, the entire training dataset is used.

C. Pseudo algorithm

We provide the algorithm description of the optimization
process in Algorithm 1.

D. More analysis and discussions

Additional analyses of hyperparameter N . We con-
ducted additional analytical experiments to evaluate the
impact of the pre-defined number of subnetworks, N , on
model training, as illustrated in Figure A. For N ≤ 6,
both the dense network and the subnetworks show improved



Table C. Detailed comparisons on the new capacity (10%) over RParis [9], ROxford [9], and GLDv2-test [15]. ResNet-18 is used as the
backbone. For methods without PrunNet, we use BCT [12] or SSPL [16] to train a new small-capacity model, whose capacity is 10% of
the dense network ϕ0, with compatibility with existing models.

Methods M(ϕ10%, ϕ0) M(ϕ10%, ϕ80%) M(ϕ10%, ϕ60%) M(ϕ10%, ϕ40%) M(ϕ10%, ϕ20%) M(ϕ10%, ϕ10%)

RParis

Joint learning + BCT 70.27 69.84 69.62 68.87 68.48 68.25
O2O-SSPL +SSPL 68.83 67.62 67.09 66.90 65.33 64.30
BCT-S w/ SwitchNet + BCT 67.99 67.82 67.61 67.18 66.57 66.07
Asymmetric-S w/ SwitchNet + BCT 68.86 56.88 54.66 54.10 51.29 67.07
SFSC + BCT 68.71 68.53 68.61 68.32 67.43 66.71
BCT-S w/ PrunNet 68.79 68.79 68.81 68.80 68.67 65.93
Asymmetric-S w/ PrunNet 62.27 62.21 62.37 61.94 61.63 56.09
Ours 73.42 73.41 73.40 73.41 73.38 70.12

ROxford

Joint learning + BCT 50.65 50.55 48.73 49.03 48.68 47.48
O2O-SSPL + SSPL 47.95 45.24 45.82 44.92 42.10 43.05
BCT-S w/ SwitchNet +BCT 49.39 49.38 49.10 47.72 45.36 46.22
Asymmetric-S w/ SwitchNet + BCT 50.38 34.81 35.05 35.08 31.37 47.71
SFSC + BCT 48.84 48.95 48.57 47.40 45.09 44.49
BCT-S w/ PrunNet 49.30 49.28 49.27 49.20 49.18 47.03
Asymmetric-S w/ PrunNet 46.27 46.74 46.48 46.84 44.88 42.48
Ours 50.53 50.42 50.54 50.67 50.40 48.41

GLDv2-test

Joint learning + BCT 8.47 8.78 8.39 8.36 8.17 8.11
O2O-SSPL + SSPL 7.68 7.69 7.82 7.62 7.29 6.95
BCT-S w/ SwitchNet + BCT 7.75 7.72 7.68 7.47 7.41 7.73
Asymmetric-S w/SwitchNet + BCT 8.48 4.40 4.05 4.39 3.19 8.27
SFSC + BCT 7.23 7.14 6.93 7.03 6.84 7.47
BCT-S w/ PrunNet 8.21 8.19 8.20 8.23 8.28 8.01
Asymmetric-S w/ PrunNet 4.20 4.24 4.34 4.30 4.62 4.09
Ours 10.07 10.05 10.04 10.08 9.87 9.12

Figure F. Comparison of mAP with subnetworks of different model sizes (storage usages on disk) and theoretical FLOPs.

performance with increasing N , indicating that optimizing
more subnetworks jointly benefits learning more accurate
rankings of the connections. However, as N continues to
increase, performance starts to degrade. This decline can be
attributed to the increased difficulty in optimizing PrunNet,
particularly due to the more intractable gradient conflicts
arising from the larger number of subnetworks.

Analyses of the hyperparameter α. As presented in Eq.
(5) in the main manuscript, we employ a hyperparameter
α to control the influence of the conflicting degree on the
weight. We conducted experiments to analyze the effect of
α. Notably, when α is set to 0, the method is simplified to
direct gradient integration after projection. Figure B illus-
trates the self-test and cross-test performance across differ-
ent values of α. The results indicate that the best perfor-

mance is achieved at α = 0.5. Setting α to a large value
causes the optimization to be dominated by gradients with
minimal conflict, which hinders the effective convergence
of the other subnetworks and results in degraded perfor-
mance. Consequently, we set α to 0.5 for all experiments.

More visualizations. We visualize the cosine similarities
between the gradient vectors of a single convolutional ker-
nel in the dense network and each subnetwork, as shown in
Figure C. We can observe that the gradient vector of each
subnetwork conflicts with that of the dense network at the
beginning of the training, evidenced by the negative cosine
similarity. As training progresses, negative cosine similari-
ties in our method occur only occasionally and are primarily
observed in the smallest subnetwork, i.e. ϕ20%. In contrast,
the subnetworks trained with the BCT-S method encounter



Table D. Detailed results of different variants over RParis [9], ROxford [9] and GLDv2-test [15]. ResNet-18 is used as the backbone.

M(ϕ0, ϕ0) M(ϕ80%, ϕ80%) M(ϕ80%, ϕ0) M(ϕ60%, ϕ60%) M(ϕ60%, ϕ0) M(ϕ40%, ϕ40%) M(ϕ40%, ϕ0) M(ϕ20%, ϕ20%) M(ϕ20%, ϕ0)

Self-test Self-test Cross-test Self-test Cross-test Self-test Cross-test Self-test Cross-test

RParis

Independent learning 73.35 71.84 – 70.71 – 70.37 – 67.77 –
Ours (N = 4) 74.60 74.62 74.62 74.61 74.65 74.47 74.53 74.18 74.35
Frozen scores 72.72 72.66 72.72 72.61 72.76 72.18 72.72 69.72 71.37
N score maps 72.01 71.45 71.57 71.38 71.69 70.88 71.38 69.57 70.99

Direct gradient integration 73.09 73.06 73.09 73.07 73.08 73.90 73.10 72.64 72.79
Direct loss combination 69.51 69.14 69.37 68.77 69.17 68.21 68.92 66.92 68.20
Pareto integration 72.10 72.09 72.09 72.11 72.09 72.04 72.10 71.36 71.71

Ours (N = 1) 72.33 72.36 72.33 72.35 72.32 72.21 72.23 67.11 70.28
Ours (N = 2) 73.56 73.45 73.49 73.39 73.41 73.31 73.42 70.32 72.31
Ours (N = 6) 73.99 74.02 74.01 73.98 73.99 73.65 73.81 72.96 73.33
Ours (N = 8) 73.58 73.56 73.58 73.52 73.56 73.47 73.54 72.76 73.14

ROxford

Independently learning 52.28 51.94 – 51.00 – 50.26 – 49.32 –
Ours (N=4) 52.69 52.66 52.67 52.59 52.59 51.95 51.99 51.49 51.19
Frozen scores 52.03 51.86 51.95 51.74 51.80 51.78 51.87 50.08 50.80
N score maps 50.11 49.87 49.56 49.37 48.79 48.73 49.41 48.02 48.73

Direct gradient integration 52.53 52.49 52.50 52.22 52.48 52.12 52.49 52.04 52.25
Direct loss combination 51.54 51.54 51.54 51.54 51.55 51.46 51.47 51.29 51.27
Pareto integration 51.85 51.73 51.84 51.70 51.82 51.44 51.73 49.97 51.38

Ours (N = 1) 51.20 51.36 51.02 51.16 50.88 51.22 51.29 46.37 46.81
Ours (N = 2) 52.00 51.87 51.87 51.87 51.94 51.70 51.93 47.43 51.24
Ours (N = 6) 53.82 53.75 53.76 53.67 53.74 53.42 53.62 52.32 53.37
Ours (N = 8) 52.63 52.58 52.60 52.68 52.66 52.83 52.82 52.14 52.93

GLDv2-test

Independently learning 10.59 10.39 – 9.94 – 9.58 – 8.23
Ours (N=4) 11.59 11.59 11.57 11.56 11.54 11.49 11.41 11.22 11.30
Frozen scores 10.95 10.81 10.86 10.69 10.71 10.12 10.42 9.21 9.71
N score maps 10.66 10.57 10.59 10.18 10.39 10.06 10.37 9.11 9.43

Direct gradient integration 11.48 11.47 11.45 11.47 11.47 11.35 11.36 11.21 11.28
Direct loss combination 9.59 9.61 9.61 8.99 9.08 8.74 8.84 8.22 8.12
Pareto integration 10.57 10.57 10.58 10.58 10.58 10.62 10.63 10.23 10.39

Ours (N = 1) 11.03 11.06 11.06 10.95 11.03 10.77 10.85 9.07 9.55
Ours (N = 2) 11.33 11.37 11.31 11.39 11.36 11.16 11.24 9.46 10.22
Ours (N = 6) 11.18 11.17 11.17 11.16 11.16 11.01 11.10 10.91 11.07
Ours (N = 8) 11.45 11.47 11.47 11.40 11.41 11.39 11.36 11.01 11.02

Table E. Comparisons on pre-determined capacities over Market-1501 [20]. We employ ResNet-18 as the backbone. We use the same
setting for the subnetwork capacities as SFSC [17] to include the results reported by [17] (denoted by †) in the comparison on Market-
1501.

M(ϕ0, ϕ0) M(ϕ56.25%, ϕ56.25%) M(ϕ56.25%, ϕ0) M(ϕ25%, ϕ25%) M(ϕ25%, ϕ0) M(ϕ6.25%, ϕ6.25%) M(ϕ6.25%, ϕ0)
Self-test Self-test Cross-test Self-test Cross-test Self-test Cross-test

Independent learning 80.91 71.25 – 67.48 – 55.25 –
SFSC† 81.43 72.06 77.26 70.74 76.37 58.19 69.43
Ours 81.55 81.25 81.36 81.32 81.28 80.08 80.31

Table F. Comparisons on pre-determined capacities over MSMT17 [14]. We employ ResNet-18 as the backbone. We use the same setting
for the subnetwork capacities as SFSC [17] to include the results reported by [17] (denoted by †) in the comparison on MSMT17.

M(ϕ0, ϕ0) M(ϕ56.25%, ϕ56.25%) M(ϕ56.25%, ϕ0) M(ϕ25%, ϕ25%) M(ϕ25%, ϕ0) M(ϕ6.25%, ϕ6.25%) M(ϕ6.25%, ϕ0)
Self-test Self-test Cross-test Self-test Cross-test Self-test Cross-test

Independent learning 43.06 30.06 – 22.86 – 11.69 –
SFSC† 43.89 – 37.74 – 35.32 – 28.16
Ours 44.73 43.93 44.26 42.77 43.58 41.29 42.75

negative cosine similarities more frequently. This indicates
that our method is more effective in alleviating gradient
conflicts. Besides, we observe lower cosine similarities in

the sparser subnetworks, which can be attributed to the fact
that they share less weight with the dense network.

We also visualize the loss convergence curves of our



Table G. Recall@1 on CUB-200 [13]. We employ ViT-S as the backbone. All models are pretrained on ImageNet-1k before being fine-
tuned on CUB-200.

M(ϕ0, ϕ0) M(ϕ80%, ϕ80%) M(ϕ80%, ϕ0) M(ϕ60%, ϕ60%) M(ϕ60%, ϕ0) M(ϕ40%, ϕ40%) M(ϕ40%, ϕ0) M(ϕ20%, ϕ20%) M(ϕ20%, ϕ0)
Self-test Self-test Cross-test Self-test Cross-test Self-test Cross-test Self-test Cross-test

Independent learning 80.00 78.89 – 78.43 – 78.18 – 77.61 –
SFSC 80.54 80.43 80.55 80.27 80.41 80.15 80.24 78.79 78.68
Ours 82.46 82.45 82.53 82.29 82.41 81.57 81.72 79.32 79.91

Table H. Comparison on PrunNet implemented by structured pruning (Str.) and unstructured pruning (UnStr.) on Landmark datasets
(Average mAP) and Inshop dataset (Recall@1). We employ ResNet-18 as the backbone.

M(ϕ0, ϕ0) M(ϕ80%, ϕ80%) M(ϕ80%, ϕ0) M(ϕ60%, ϕ60%) M(ϕ60%, ϕ0) M(ϕ40%, ϕ40%) M(ϕ40%, ϕ0) M(ϕ20%, ϕ20%) M(ϕ20%, ϕ0)
Self-test Self-test Cross-test Self-test Cross-test Self-test Cross-test Self-test Cross-test

Landmark
SFSC 44.47 44.28 44.40 43.91 43.94 42.98 43.67 41.43 43.00
Ours (Str.) 44.81 44.72 45.04 44.46 45.14 44.07 44.33 41.58 43.10
Ours (UnStr.) 46.29 46.29 46.29 46.25 46.26 45.97 45.98 45.63 45.61

In-shop
SFSC 84.57 84.48 84.40 84.25 84.31 84.15 84.20 83.57 83.74
Ours (Str.) 86.90 86.69 86.78 86.59 86.70 86.37 86.66 86.19 86.34
Ours (UnStr.) 87.31 87.30 87.33 87.21 87.23 87.14 87.15 86.43 86.77

method and BCT-S on GLDv2, as shown in Figure D. At the
beginning of training, the losses for both methods decline
sharply. However, as training progresses, BCT-S struggles
to decrease the losses of subnetworks further. The losses of
subnetworks exhibit substantial inconsistency with that of
the dense network. In contrast, when training PrunNet with
our method, the losses of all networks remain consistent and
converge to lower values.

We show additional visualization of feature distributions
across the dense network and different capacities of sub-
networks in Figure E. All subnetworks exhibit feature dis-
tributions consistent with the dense network on Market-
1501 [20] and MSMT17 [14] datasets, demonstrating the
effectiveness of our proposed method.

Better performance than independent learning. In our
proposed algorithm, the compatible losses L1,L2, . . . ,LN

can be interpreted as regularization terms applied to the
dense network. These regularization terms are designed to
encourage a small subset of weights within the network to
play the role of the entire network, enabling accurate clas-
sification of input samples. Essentially, these regularization
terms, along with the corresponding parameter-sharing sub-
networks, promote the sparsity of PrunNet, thereby enhanc-
ing its generalization ability. Consequently, dense networks
optimized using our method exhibit superior performance
on various benchmarks compared to those trained indepen-
dently, as demonstrated by our experimental results.

E. Detailed experimental results

In this section, we present the detailed experimental results
over the landmark benchmarks, including RParis [9], ROx-
ford [9], and GLDv2-test [15].

Table A reports the performance of the dense network
and subnetworks at pre-determined capacities. Our method
outperforms the others in terms of both self-test and cross-

test performance for the dense network and most subnet-
works across these three datasets.

The detailed experimental results using different archi-
tectures are shown in Table B. Our method achieves the
best performance over RParis, Roxford, and GLDv2-test on
these representative architectures, indicating its strong gen-
eralization ability.

The detailed results of the experiments for simulating
the deployment demand on new platforms are shown in Ta-
ble C. For the methods without our PrunNet, we employ
BCT [12] or SSPL [16] to train the subnetwork at 10% ca-
pacity compatible with the dense network, while for the
methods with PrunNet, we conduct pruning by choosing
the parameters with top-10% score. Our method achieves
the best performance of the subnetwork at 10% capacity,
demonstrating the effectiveness of our method and the flex-
ibility for multi-platform deployments.

We also present detailed results of ablation studies on
each landmark dataset in Table D. These detailed exper-
imental results are consistent with the average results re-
ported in the main manuscript, confirming the effectiveness
of the proposed techniques.

F. Experiments on additional benchmarks
We carry out additional experiments on the following
datasets to validate the generalization of our method: (1)
Market-1501 [20]: A person re-identification dataset con-
taining 32,668 images of 1,501 identities captured by 6
cameras. We use the standard split of 12,936 training
images (751 identities) and 19,732 testing images (750
identities). (2) MSMT17 [14]: A large-scale person re-
identification dataset with 126,441 images of 4,101 iden-
tities captured by 15 cameras. We adopt the split of 32,621
training images (1,041 identities) and 93,820 testing images
(3,060 identities). (3) CUB-200-2011 [13]: A fine-grained
bird classification dataset with 11,788 images of 200 bird



species. We use the standard split of 5,994 training images
and 5,794 testing images.

The experimental results are presented in Table E, Ta-
ble F and Table G, respectively. For Market-1501 and
MSMT17 experiments, we employ ResNet-18 as the back-
bone while adopting ViT-S for CUB-200 experiments. Our
method achieves state-of-the-art performance on both self-
test and cross-test, validating the effectiveness and gener-
alization of our proposed PrunNet. In particular, we found
that CUB-200 with 5,994 training images is insufficient to
train ViT-S from scratch. Hence, we pretrained all models
on ImageNet-1K [1] before fine-tuning them on CUB-200.

G. Further exploration on structured pruning

Unlike structured pruning which preserves contiguous pa-
rameter blocks compatible with hardware computation
units, unstructured pruning produces irregular sparse pa-
rameters, making it challenging to achieve actual acceler-
ation on hardware implementations. To demonstrate the
practical advantages of our method implemented by un-
structured pruning, we present the storage usage (in the
COO format) and theoretical FLOPs in Figure F.

We further conduct structured pruning experiments to
explore a hardware-efficient method to generate compati-
ble subnetworks. To achieve this, we implement a kernel-
level score aggregation scheme, where pruning decisions
are made by averaging importance scores within each con-
volutional kernel and removing kernels with the lowest ag-
gregated scores. This approach enables PrunNet to directly
leverage structured pruning mechanisms while maintaining
architectural integrity. As presented in Table H, the struc-
tured pruning variant exhibits a moderate performance drop
compared to the unstructured one, which is consistent with
typical trends. Nevertheless, it outperforms SFSC, demon-
strating its potential for structured sparsity. We will con-
tinue exploring structured PrunNet in future work.

H. Convergence analyses

In this section, we provide theoretical analyses of the con-
vergence of our PrunNet and optimization algorithm.

H.1. Convergence analyses of greedy pruning
We analyze the convergence of greedy pruning in the fol-
lowing. According to the gradient calculated by Eq. (2) in
the main manuscript, the update of score slij can be formu-
lated as follows:

s̃lij = slij − η
∂L(Ili)
∂Ili

wl
ijZ l−1

j . (1)

If the connection (i, j) is replaced by (i, k) after the update,
we can conclude that slij > slik but s̃lij < s̃lik. Hence we

have the following inequality:

s̃lij − slij < s̃lik − slik. (2)

Based on Eq. (1), we can derive the inequality:

−η ∂L(I
l
i)

∂Ili
wl

ijZ l−1
j < −η ∂L(I

l
i)

∂Ili
wl

ikZ l−1
k . (3)

We denote Ĩli as the new input to the i-th neuron at the l-th
layer nl

i after the replacement, and denote w̃l
ik as the new

weight of the connection between nl
i and nl−1

k . Our goal is
to prove the convergence of the loss, which can be formu-
lated as L(Ĩli) < L(Ili). According to Eq. (1) in the main
manuscript, we have:

Ĩli − Ili = w̃l
ikZ l−1

k − wl
ijZ l−1

j . (4)

Assuming the loss is smooth and Ĩli is close to Ili , we can
perform a Taylor expansion of the loss at Ili ignoring the
second-order term, as shown in the follows:

L(Ĩli) = L(Ili + (Ĩli − Ili))

≤ L(Ili) +
∂L(Ili)
∂Ili

(Ĩli − Ili)

= L(Ili) +
∂L(Ili)
∂Ili

(w̃l
ikZ l−1

k − wl
ijZ l−1

j )

= L(Ili) +
∂L(Ili)
∂Ili

((wl
ik − η

∂L
∂wl

ik

)Z l−1
k − wl

ijZ l−1
j )

= L(Ili) +
∂L(Ili)
∂Ili

(wl
ikZ l−1

k − wl
ijZ l−1

j )

− η
∂L(Ili)
∂Ili

∂L
∂wl

ik

Z l−1
k

= L(Ili) +
∂L(Ili)
∂Ili

(wl
ikZ l−1

k − wl
ijZ l−1

j )− η(
∂L
∂wl

ik

)2.

(5)

From Eq. (3), we have ∂L(Il
i)

∂Il
i

(wl
ikZ

l−1
k − wl

ijZ
l−1
j ) < 0.

Thus we have proven that L(Ĩli) < L(Ili), indicating the
convergence of our greedy pruning scheme.

H.2. Convergence analyses of gradient integration

We analyze the convergence of the proposed conflict-aware
gradient integration algorithm using a two-task learning ex-
ample, where two losses L1 and L2 are optimized simulta-
neously. In this case, the network is optimized with the total
loss L = L1 + L2 where conflict-aware gradient integra-
tion is introduced to handle the gradient conflicting issue.
We assume that L1 and L2 are convex and differentiable,
and that the gradient of L is L-Lipschitz continuous with
L > 0. A learning rate η ≤ 1

L is used in the conflict-aware



gradient integration scheme to update the parameters. Our
goal is to prove L(θ̃) < L(θ), where θ is the parameters, θ̃
is the new parameters updated with our conflict-aware gra-
dient integration scheme.

Denoting the gradients of L1 and L2 by g1 and g2, re-
spectively, if their cosine similarity ⟨g1, g2⟩ ≥ 0, we di-
rectly calculate the summation of g1 and g2, which equals to
the gradient of L, to update the network. Given that η ≤ 1

L ,
the total loss L will decrease unless ∇L = 0 in this situ-
ation. Next we discuss the situation where ⟨g1, g2⟩ < 0.
Assuming that ∇L is L-Lipschitz continuous, we can con-
clude that ∇2L(θ)− LI is a negative semi-definite matrix.
We then conduct a quadratic expansion of L around L(θ),
which leads to the following inequality:

L(θ̃) ≤ L(θ) +∇L(θ)T (θ̃ − θ) +
1

2
∇2L(θ) ∥ θ̃ − θ ∥2

≤ L(θ) +∇L(θ)T (θ̃ − θ) +
1

2
L ∥ θ̃ − θ ∥2 .

(6)

Based on Eq. (3) in the main manuscript, we have:

θ̃ − θ = −ηg̃ = −nη(aĝ1 + bĝ2), (7)

where ĝ1 and ĝ2 denote the gradient after projection, a
and b denote the cosine similarity between (g1, ĝ1) and
(g2, ĝ2), respectively. n represents the normalization coef-
ficient, whose value equals 2

a+b . Considering that∇L(θ) =
g = g1 + g2, Eq. (6) can be reformulated as:

L(θ̃) ≤ L(θ)− nηgT (aĝ1 + bĝ2) +
1

2
n2Lη2 ∥ aĝ1 + bĝ2 ∥2

≤ L(θ)− nηgT (aĝ1 + bĝ2) +
1

2
n2η ∥ aĝ1 + bĝ2 ∥2

= L(θ)− nη(g1 + g2)
T (aĝ1 + bĝ2)

+
1

2
n2η(a2 ∥ ĝ1 ∥2 +b2 ∥ ĝ2 ∥2 +2abĝ1 · ĝ2)

= L(θ)− nη(ag1 · ĝ1 + bg2 · ĝ2 + aĝ1 · g2 + bĝ2 · g1

− 1

2
na2 ∥ ĝ1 ∥2 −

1

2
nb2 ∥ ĝ2 ∥2 −nabĝ1 · ĝ2).

(8)
Given that ĝ1 · g2 = 0 and ĝ2 · g1 = 0, we can derive:

L(θ̃) ≤ L(θ)− nη(ag1 · ĝ1 + bg2 · ĝ2

− 1

2
na2 ∥ ĝ1 ∥2 −

1

2
nb2 ∥ ĝ2 ∥2 −nabĝ1 · ĝ2).

(9)
Herein a and b are the cosine similarity between (g1, ĝ1)
and (g2, ĝ2), respectively. We have

ag1 · ĝ1 = a2 ∥ g1 ∥∥ ĝ1 ∥= a ∥ ĝ1 ∥2,
bg2 · ĝ2 = b2 ∥ g2 ∥∥ ĝ2 ∥= b ∥ ĝ2 ∥2 .

(10)

Then we get:

L(θ̃) ≤ L(θ)− nη(a ∥ ĝ1 ∥2 +b ∥ ĝ2 ∥2

− 1

2
na2 ∥ ĝ1 ∥2 −

1

2
nb2 ∥ ĝ2 ∥2 −nabĝ1 · ĝ2)

= L(θ)− nη((a− 1

2
na2) ∥ ĝ1 ∥2

+ ((b− 1

2
nb2) ∥ ĝ2 ∥2 −nabĝ1 · ĝ2)

= L(θ)− nη
ab

a+ b
(∥ ĝ1 ∥2 + ∥ ĝ2 ∥2 −2ĝ1 · ĝ2))

= L(θ)− nη
ab

a+ b
(∥ ĝ1 − ĝ2 ∥2).

(11)
Since the angle between the vectors before and after pro-

jection is less than π
2 , we have a, b ∈ (0, 1) and ab

a+b > 0.
Thus, we have proven that L(θ̃) < L(θ), indicating the con-
vergence of our conflict-aware gradient integration scheme.

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 8

[2] Alexey Dosovitskiy. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, pages 1–22, 2020. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1

[4] Lingxiao He, Xingyu Liao, Wu Liu, Xinchen Liu, Peng
Cheng, and Tao Mei. Fastreid: A pytorch toolbox for general
instance re-identification. In Proceedings of the 31st ACM
International Conference on Multimedia, pages 9664–9667,
2023. 1

[5] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Ea-
gleeye: Fast sub-net evaluation for efficient neural network
pruning. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part II 16, pages 639–654. Springer, 2020. 1

[6] Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. A
deep learning-based approach to progressive vehicle re-
identification for urban surveillance. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14,
pages 869–884. Springer, 2016. 1

[7] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou
Tang. Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1096–1104, 2016. 1

[8] Tan Pan, Furong Xu, Xudong Yang, Sifeng He, Chen Jiang,
Qingpei Guo, Feng Qian, Xiaobo Zhang, Yuan Cheng, Lei



Yang, et al. Boundary-aware backward-compatible repre-
sentation via adversarial learning in image retrieval. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 15201–15210, 2023. 1

[9] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis
Avrithis, and Ondřej Chum. Revisiting oxford and paris:
Large-scale image retrieval benchmarking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5706–5715, 2018. 2, 3, 4, 5, 6, 7

[10] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kemb-
havi, Ali Farhadi, and Mohammad Rastegari. What’s hidden
in a randomly weighted neural network? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11893–11902, 2020. 1

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018. 1

[12] Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto.
Towards backward-compatible representation learning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6368–6377, 2020. 5,
7

[13] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011. 7

[14] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 79–88, 2018.
6, 7

[15] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim.
Google landmarks dataset v2-a large-scale benchmark for
instance-level recognition and retrieval. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2575–2584, 2020. 1, 2, 3, 4, 5, 6, 7

[16] Hui Wu, Min Wang, Wengang Zhou, and Houqiang Li.
Structure similarity preservation learning for asymmetric im-
age retrieval. IEEE Transactions on Multimedia, pages
4693–4705, 2023. 5, 7

[17] Shengsen Wu, Yan Bai, Yihang Lou, Xiongkun Linghu,
Jianzhong He, and Ling-Yu Duan. Switchable representa-
tion learning framework with self-compatibility. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15943–15953, 2023. 6

[18] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1492–
1500, 2017. 1

[19] Andrew Zhai and Hao-Yu Wu. Classification is a
strong baseline for deep metric learning. arXiv preprint
arXiv:1811.12649, pages 1–12, 2018. 1

[20] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In Proceedings of the IEEE international con-
ference on computer vision, pages 1116–1124, 2015. 6, 7


	Additional details of weight inheritance
	Additional implementation details
	Pseudo algorithm
	More analysis and discussions
	Detailed experimental results
	Experiments on additional benchmarks
	Further exploration on structured pruning
	Convergence analyses
	Convergence analyses of greedy pruning
	Convergence analyses of gradient integration


