
MDP: Multidimensional Vision Model Pruning with Latency Constraint

Supplementary Material

6. Latency Modeling: Ours v.s. Prior Arts

In the main paper, we highlight that prior approaches [35,
61, 62] rely on imprecise latency estimation, leading to sub-
optimal accuracy-latency trade-offs. These methods use a
simplistic latency model that assumes a linear relationship
between latency and the number of output channels. How-
ever, this approach is limited as it cannot simultaneously
account for multiple prunable dimensions and is restricted
to CNNs.

When pruning transformers, it is essential to model si-
multaneous variations across multiple dimensions, such as
embedding size, query/key dimensions, value dimensions,
number of heads, and MLP size, which cannot be captured
by a linear model. Even for CNNs, such linear modeling
lacks precision. To illustrate, we provide a visualization in
Fig. 5, demonstrating the limitations of prior latency mod-
eling. Specifically, these models only account for changes
in output channels while neglecting concurrent variations in
input channels caused by pruning in preceding layers.

7. Solving MINLPs

In order to solve our MINLP program, we leverage the
method called OA [18, 24] which decomposes the problem
into solving an alternating finite sequence of NLP subprob-
lems and relaxed versions of MILP master program. We
also leverage a method called Feasibility Pump [5] to to ex-
pedite the process of finding feasible solutions within con-
straints.

The entire program could be efficiently solved on com-
mon CPUs for modern network sizes. For instance, when
applied to a model like ResNet50 [30], the entire optimiza-
tion problem can be solved in approximately 5 seconds on
an Intel Xeon E5-2698 CPU. Moreover, in Table 4, we show
the overhead of solving MINLPs for ResNet50 and DEIT-
Base relative to their training times. As shown, solving the
MINLP program is efficient, for example taking only 0.1%
of DEIT-Base’s total training time. Theoretically, as estab-
lished in [41], the problem remains tractable and scalable
as long as the objective and constraint functions are con-
vex separable or gated with a switch variable. Here, block
decision variables act as gates, simplifying the solving.

8. Efficiency of LUTs Preparation

In our framework, we leverage latency look-up tables
(LUTs) to model the latency impacts from different prun-
ing decisions. In LUTs, the inference latency for all pos-

sible local subnet structures are recorded. For CNN lay-
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Figure 5. Comparison in latency modeling between ours and

prior arts [35, 61]. Example with CNNs.

ers for example, this includes input and output channel
counts from 0 up to their original values. While this may
seem computationally expensive, the process is efficient in
practice. Firstly, LUTs are generated only once to mea-
sure target hardware latency and can be reused for future
pruning runs, with minimal overhead even without paral-
lelization (Table 4). Moreover, our model-specific decom-

position as shown in Eqn.3,4 significantly reduces the to-
tal number of LUT entries, and we further adopt channel
grouping [35, 61, 69] to cluster channels of similar impor-
tance into single elements, minimizing overhead. Addition-
ally, LUTs can be reused across related architectures (e.g.,
ResNet101 shares many LUT entries with ResNet50).

9. Adaptation to CPU

To demonstrate adaptability, we evaluated our method on
the CPU platform using an Intel Xeon E5 processor. The
results, summarized in Table 5, indicate substantial per-
formance gains over prior work. Notably, compared to
HALP [61], our method achieves more than double the FPS
(118.2 vs. 45.9) while also attaining a higher Top-1 accu-
racy (75.2 vs. 74.5). This improvement is even more pro-
nounced than the speedup observed on GPU. We attribute
this to the reduced number of blocks and the smaller over-
all network depth, which make the network more CPU-
friendly. These results highlight the effectiveness of MDP
in generalizing across both CPU and GPU platforms.

10. Pruning Efficient CNNs

We include results for pruning efficient CNNs like
MobileNet-V1 and MobileNet-V2 in Table 7. Our method
consistently outperforms prior approaches. For example,
on MobileNet-V2, compared to UPDP [50], we achieve



TRAIN (MINS) SOLVE MINLP (MINS) LUT PREP. (MINS)

RESNET50 TRAINED FOR 90 EPOCHS

667(×1) 0.09(×0.01%) 152(×23%)

DEIT-BASE TRAINED FOR 300 EPOCHS

7614(×1) 7.53(×0.1%) 320(×4.2%)

Table 4. Overhead of solving MINLP and preparing the Look-

up Table(LUT) for ResNet50 and DEIT-B. LUT only needs to be

generated once. CPU in use is Intel Xeon E5-2698.

METHOD TOP-1↑ FPS↑
AUTOSLIM [84] 74.0 33.3
EAGLEEYE [42] 74.2 31.3

METAPRUNE [53] 73.4 33.3
HALP-70% [61] 74.5 45.9

Ours 75.2 118.2

Table 5. Generalization of MDP on CPU Platform. FPS mea-

sured on Intel CPU Xeon E5. Ours attains significant improve-

ments from prior arts, specifically in speedups.

Figure 6. Pruned architecture of ResNet50 on ImageNet.

slightly higher Top-1 (72.6 vs. 72.5) and improved speed
(2.63 vs. 2.50).

Furthermore, our approach focuses on aggressively
pruning moderate or large models to derive efficient ones.
This strategy offers superior accuracy-speed tradeoffs com-
pared to directly training efficient models from scratch, as
shown in Fig. 8.

11. Pruned Structure Analysis

To provide insights into our pruning algorithm, we present
the pruned structure of ResNet50 on ImageNet in Fig. 6,
targeting an 85% latency reduction. The figure shows that
pruning is predominantly concentrated in the shallower lay-
ers, contrary to the common expectation of deeper layers
collapsing due to smaller gradients. This indicates that
when latency is strict constraint, the pruning pattern is in-
fluenced not only by importance ranking but also by la-

Figure 7. Results of ours with soft masking on ImageNet with

ResNet50. We investigate the effectiveness of soft masking tech-

niques in our method and observe improvement in Top1 at a high

FPS level. Top-right is better.

tency considerations. Since earlier layers process larger fea-
ture maps and are generally more latency-intensive, they are
pruned more aggressively than later stages.

12. Training Detail

For reproducibility, we provide detailed hyperparameters
and fine-tuning optimization settings in Table 6, adhering to
the baseline configurations. Specifically, when fine-tuning
the pruned DEIT-Base model on ImageNet, we incorporate
the distillation loss from the convolutional RegNetY160
model, as described in the original paper.

13. Integration with Soft Masking

Recent advances in pruning [31, 35, 36, 39, 87] have in-
creasingly adopted soft masking techniques to retain the
learning capacity of pruned models by not directly remov-
ing the pruned weights. Notably, SMCP [35] integrates
this method into the HALP hardware-aware pruning frame-
work, resulting in an enhanced accuracy-latency tradeoff for
pruned models. Here, we explore the potential of soft mask-
ing to enhance our model’s performance.

We conduct this study on ImageNet with ResNet50
and depict the Pareto frontier of FPS versus Top-1 in
Figure 7. For clarity, we also include the performance
of SMCP [35] and ours. The results reveal that soft
masking offers limited advantages at lower FPS lev-
els with modest pruning ratios and latency reduction.
Nonetheless, targeting higher FPS levels leads to notable
improvements in Top-1 accuracy. This outcome may
be attributed to the Taylor channel importance score we
employed [59], which gauges parameter significance
based on its impact on loss. Though it maintains preci-
sion with minor parameter deletions, its reliability may



Model Dataset Epochs Optimizer, Momentum, WeightDecay Learning Rate

ResNet50 ImageNet 90 SGD, 0.875, 3e− 5 Init=1.024, LinearDecay
DEIT-Base ImageNet 300 AdamW, 0.9, 0.05 Init=2e− 4, CosineAnneal

SSD512 PascalVOC 800 SGD, 0.9, 2e− 3 Init=8e− 3, StepDecay
StreamPetr NuScenes 60 AdamW, 0.9, 0.01 Init=6e− 4, CosineAnneal

Table 6. Training Detail.

MODEL TOP-1 SPEEDUP

MobileNet-V1 72.6 ×1.00
MetaPrune[49] 66.1 ×2.06
HALP-42%[57] 68.3 ×2.32
SMCP-40%[34] 68.3 ×2.39

Ours 68.5 ×2.41

MobileNet-V2-1.4 75.3 ×1.00
MBV2-1.4-DS-E 72.2 ×2.50
UPDP-P11 [50] 72.5 ×2.50

Ours 72.6 ×2.63

Table 7. Results on prun-

ing efficient CNNs.

Pruning Methods

Efficient CNNs

MobileNetV2-1.4

MobileNetV2

0.75 x MobileNet

ResNet18

EfficientNet

Figure 8. Top-right is better. Recent

pruning works surpass efficient CNNs

in speed-accuracy tradeoffs on Ima-

geNet, with ours achieving the best.

diminish when a larger number of parameters are pruned
concurrently. The iterative reassessment inherent to the
soft masking technique may counteract this shortcoming.
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François Margot. A feasibility pump for mixed integer non-

linear programs. Mathematical Programming, 119(2):331–

352, 2009. 3, 6, 1

[6] Samuel Burer and Adam N Letchford. Non-convex mixed-

integer nonlinear programming: A survey. Surveys in Op-

erations Research and Management Science, 17(2):97–106,

2012. 2, 3

[7] Michael R Bussieck, Armin Pruessner, et al. Mixed-integer

nonlinear programming. SIAG/OPT Newsletter: Views &

News, 14(1):19–22, 2003. 2, 3

[8] Michael L Bynum, Gabriel A Hackebeil, William E Hart,

Carl D Laird, Bethany L Nicholson, John D Siirola, Jean-

Paul Watson, David L Woodruff, et al. Pyomo-optimization

modeling in python. Springer, 2021. 3, 6

[9] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-

ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-

modal dataset for autonomous driving. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 11621–11631, 2020. 6, 7

[10] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda.

Crossvit: Cross-attention multi-scale vision transformer for

image classification. In Proceedings of the IEEE/CVF in-

ternational conference on computer vision, pages 357–366,

2021. 3, 7

[11] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin

Ling. Autoformer: Searching transformers for visual recog-

nition. In Proceedings of the IEEE/CVF international con-

ference on computer vision, pages 12270–12280, 2021. 7

[12] Shi Chen and Qi Zhao. Shallowing deep networks: Layer-

wise pruning based on feature representations. IEEE trans-

actions on pattern analysis and machine intelligence, 41(12):

3048–3056, 2018. 2, 3

[13] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang,

and Zhangyang Wang. Chasing sparsity in vision transform-

ers: An end-to-end exploration. Advances in Neural Infor-

mation Processing Systems, 34:19974–19988, 2021. 3, 7

[14] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-

berger, and Yixin Chen. Compressing neural networks with

the hashing trick. In ICML, pages 2285–2294. PMLR, 2015.

3

[15] Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Mar-

culescu. Towards efficient model compression via learned

global ranking. In CVPR, pages 1518–1528, 2020. 2

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255. Ieee, 2009. 6, 7

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 1, 3, 4

[18] Marco A Duran and Ignacio E Grossmann. An outer-

approximation algorithm for a class of mixed-integer non-

linear programs. Mathematical programming, 36:307–339,

1986. 3, 4, 1

[19] Claudia D’Ambrosio and Andrea Lodi. Mixed integer non-

linear programming tools: an updated practical overview.

Annals of Operations Research, 204:301–320, 2013. 3

[20] Sara Elkerdawy, Mostafa Elhoushi, Abhineet Singh, Hong

Zhang, and Nilanjan Ray. To filter prune, or to layer prune,

that is the question. In Proceedings of the Asian Conference

on Computer Vision, 2020. 2, 3, 6, 7



[21] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010. 6, 7

[22] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and

Xinchao Wang. Depgraph: Towards any structural pruning.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 16091–16101, 2023.

2

[23] Gongfan Fang, Xinyin Ma, Michael Bi Mi, and Xinchao

Wang. Isomorphic pruning for vision models. In European

Conference on Computer Vision, pages 232–250. Springer,

2025. 1, 2, 3, 7

[24] Roger Fletcher and Sven Leyffer. Solving mixed integer non-

linear programs by outer approximation. Mathematical pro-

gramming, 66:327–349, 1994. 3, 4, 1
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