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The following materials are provided in this supplementary file:
• The detailed derivation from the SD classifier formulation (Eq. (4) in the main paper) to the CSD loss formulation (Eq. (5)

in the main paper) (referring to Sec. 3.3 in the main paper);
• Comparisons with GAN-based methods (referring to Sec. 4.1 in the main paper);
• User study (referring to Sec. 4.1 in the main paper.)
• More visual examples of different pixel-semantic scale selections (referring to Sec. 4.2 in the main paper);
• More visual comparisons between our PiSA-SR and DM-based SR methods (referring to Sec. 4.3 in the main paper);
• Ablation studies (referring to Sec. 4.3 in the main paper).

1. The detailed derivation
We rewrite Eq. (4) in the main paper as follows:
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where the SD model is parameterized by θ, zsemH is the estimated HQ latent with the PiSA LoRA, c is the text prompt
extracted from zsemH , σt =

√
1− ᾱt is the standard deviation, and ϵreal is the output of pre-trained SD model. zt is obtained

by adding noise ϵ to semantic output zsemH by zt =
√
ᾱt ·zsemH +

√
1− ᾱt · ϵ, where the noise ϵ is sampled from ϵ ∼ N (0, I).
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is the timestep-dependent scalar weight introduced in DMD [18] to improve the training

dynamics, where S is the number of spatial locations, C is the number of channels, and f(·) is the function defined in Eq.
(1) of the main paper, ϵλcfg

real denotes the pre-trained SD output with the classifier-free guidance (CFG) term ϵclsreal defined in
Eq. (6) of the main paper.

Following [14, 18], we calculate the distribution matching gradient within the latent space instead of the noise domain.
Therefore, Eq. (S1) can be written as:
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We apply the CFG component to f (zt, ϵreal(zt, t, c)) in Eq. (S2) and merge the timestep-related weights to obtain Eq.
(S4), which is the form of Eq. (5) in the main paper.
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Table S1. Quantitative comparison among the state-of-the-art GAN-based SR methods on synthetic and real-world test datasets. The best
results are highlighted in red.

Datasets Methods PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓ CLIPIQA↑ MUSIQ↑ MANIQA↑
RealESRGAN 24.29 0.6371 0.3112 0.2141 37.64 4.68 0.5277 61.06 0.5501

BSRGAN 24.58 0.6269 0.3351 0.2275 44.23 4.75 0.5071 61.20 0.5247
LDL 23.83 0.6344 0.3256 0.2227 42.29 4.85 0.5180 60.04 0.5350DIV2K

PiSA-SR-S1 23.87 0.6058 0.2823 0.1934 25.07 4.55 0.6927 69.68 0.6400
RealESRGAN 25.69 0.7616 0.2727 0.2063 135.18 5.83 0.4449 60.18 0.5487

BSRGAN 26.39 0.7654 0.2670 0.2121 141.28 5.66 0.5001 63.21 0.5399
LDL 25.28 0.7567 0.2766 0.2121 142.71 6.00 0.4477 60.82 0.5485RealSR

PiSA-SR-S1 25.50 0.7417 0.2672 0.2044 124.09 5.50 0.6702 70.15 0.6560
RealESRGAN 28.64 0.8053 0.2847 0.2089 147.62 6.69 0.4422 54.18 0.4907

BSRGAN 28.75 0.8031 0.2883 0.2142 155.63 6.52 0.4915 57.14 0.4878
LDL 28.21 0.8126 0.2815 0.2132 155.53 7.13 0.4310 53.85 0.4914DrealSR

PiSA-SR-S1 28.31 0.7804 0.2960 0.2169 130.61 6.20 0.6970 66.11 0.6156

2. Comparisons with GAN-based methods
We compare PiSA-SR with three representative GAN-based SR methods: RealESRGAN [11], BSRGAN [20], and LDL [7].
The quantitative results are presented in Table S1. PiSA-SR achieves the best performance on no-reference metrics (NIQE
[8], CLIPIQA [10], MUSIQ [6], and MANIQA [16]) across the three benchmark datasets [1, 3, 13], due to the enhanced
generative capacity of the pre-trained SD model.

In addition, PiSA-SR demonstrates competitive results on reference-based metrics (e.g., LPIPS [21] and DISTS [4]),
demonstrating a strong balance between perceptual quality and content fidelity. Fig. S1 provides visual comparisons between
PiSA-SR and the GAN-based methods. PiSA-SR generates more realistic details from LQ images, such as the regular textures
of rope (see the first group) and the intricate textures of leaves (see the second and third groups).

3. User study
To further validate the effectiveness of the proposed adjustable SR method, we conducted a user study. Each participant was
presented with a series of LQ images and their corresponding HQ outputs restored by our method. Specifically, for each LQ
input, we applied a fixed pixel-level guidance factor of 1.0, ensuring consistency in pixel-level enhancement. Then, two HQ
images were restored using two varying semantic guidance factors of 0.6 and 1.2, respectively. During the study, participants
were asked to select one of the two generated HQ images with superior semantic quality. The selection was considered
positive if the participant chose the image generated with a semantic guidance factor of 1.2, demonstrating that our method
effectively enhances the semantic quality of the output by increasing the semantic guidance factor.

In total, 10 participants provided 500 votes on 50 different LQ images. The results showed a positive selection rate of
98%, which strongly supports the effectiveness of our approach. Therefore, increasing the semantic guidance factor can
lead to noticeable improvements in semantic quality, making the generated images more visually appealing and semantically
faithful to the input structure.

4. More visual examples on adjustable SR
In Fig. S2, we provide additional visual examples on adjustable SR. The horizontal and vertical axes represent the enhance-
ment scales for semantic and pixel levels, respectively. Increasing pixel-level enhancement gradually reduces degradation
and sharpens edges, but excessive enhancement can blur finer details (e.g., the lady’s hair accessory in the first group of Fig.
S2). On the other hand, raising the semantic-level enhancement improves overall scene details (e.g., the seagull’s wings, sea
ripples, and island trees in the second group of Fig. S2), but may introduce artifacts when over-enhanced.

5. More visual comparisons with DM-based SR methods
We provide more visual comparisons of DM-based SR methods in Fig. S3. PiSA-SR surpasses other methods by reconstruct-
ing more accurate structures (e.g., the red flag’s structure in the second group) and producing more realistic details (e.g., the
flower’s texture in the fourth group and the water ripples in the fifth group of Fig. S3).
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Figure S1. Visual comparisons between PiSA-SR and different GAN-based SR methods. Please zoom in for a better view.



Figure S2. Visual examples of PiSA-SR with different pixel-semantic scales. The horizontal and vertical axes indicate the semantic-level
and pixel-level enhancement scales, respectively.
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Figure S3. Visual comparisons of different DM-based SR methods. Please zoom in for a better view.



Table S2. Ablation studies on the dual-LoRA training approach on the RealSR dataset.

Methods Pixel-level LoRA Semantic-level LoRA PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MANIQA↑ MUSIQ↑
V1 ✓ × 27.28 0.7975 0.3090 0.3130 0.3995 49.02
V2 × ✓ 24.13 0.7290 0.2803 0.6711 0.6614 70.69

PiSA-SR ✓ ✓ 25.50 0.7417 0.2672 0.6702 0.6560 70.15

Table S3. Comparisons of CFG and the proposed semantic-level guidance on the RealSR dataset.

λcfg λsem PSNR↑ LPIPS↓ CLIPIQA↑ MUSIQ↑ Inference time(s)/Image
1.0 1.0 25.50 0.2672 0.6702 70.15 0.09
1.2 × 25.38 0.2684 0.6708 70.23 0.15
1.5 × 25.30 0.2698 0.6708 70.29 0.15
3.0 × 24.61 0.2834 0.6540 70.14 0.15
× 1.2 24.59 0.3000 0.7015 71.60 0.13
× 1.5 23.08 0.3541 0.6835 71.76 0.13

Table S4. Ablation studies on pixel-level and semantic-level LoRA ranks on the RealSR dataset.

Methods Pixel-level LoRA rank Semantic-level LoRA rank PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MANIQA↑ MUSIQ↑
PiSA-SR 4 4 25.50 0.7417 0.2672 0.6702 0.6560 70.15

R1 4 8 25.40 0.7401 0.2719 0.6734 0.6584 69.93
R2 4 16 25.36 0.7398 0.2726 0.6757 0.6603 70.15
R3 4 32 25.40 0.7394 0.2733 0.6784 0.6634 70.13
R4 8 4 25.39 0.7422 0.2628 0.6663 0.6500 69.86
R5 16 4 25.54 0.7511 0.2624 0.6603 0.6436 69.77
R6 32 4 26.01 0.7565 0.2564 0.6318 0.6409 68.30

6. Ablation studies
6.1. Effectiveness of the dual-LoRA training

To validate the effectiveness of the proposed dual-LoRA training approach, we conduct three experiments, as shown in Table
S2: optimizing only the pixel-level LoRA with ℓ2 loss (V1), optimizing only the semantic-level LoRA with LPIPS and CSD
losses (V2), and applying the proposed dual-LoRA training (PiSA-SR). The performance is evaluated on the RealSR test
dataset [3]. In V1, the no-reference-based metrics are relatively poor, suggesting that the results lack finer details. In V2,
while only optimizing with semantic losses, the reference-based metrics decline, introducing weakened fidelity and unnatural
details. In contrast, the proposed dual-LoRA training (PiSA-SR) strikes a better balance between fidelity and perceptual
quality. It preserves fine pixel-level details in LQ while enhancing semantic details, resulting in more visually pleasing and
natural-looking results.

6.2. Comparison between CFG and the proposed semantic-level guidance

CFG [5] is a commonly used strategy to enhance semantic information in text-to-image (T2I) tasks [9] and multi-step DM-
based SR methods [15, 17]. However, it becomes ineffective in one-step DMs distilled from multi-step DMs [14, 18]. As
discussed in Sec. 4.2 of the main paper, our proposed semantic-level guidance offers an alternative for one-step DM-based
SR methods to semantics enhancement. To further demonstrate its effectiveness, we compare the proposed semantic-level
guidance with CFG on the RealSR [3] test dataset in Table S3. Unlike in multi-step DM-based SR methods, increasing
the CFG scale in one-step DMs does not improve no-reference metrics (CLIPIQA [10], MUSIQ [6]) and can even degrade
both reference- and no-reference-based metrics (e.g., LPIPS [21] and CLIPIQA [10]) at higher scales (e.g., λcfg = 3.0). In
contrast, adjusting the proposed semantic-level guidance effectively boosts semantic information in the restored image (e.g.,
changing λsem from 1.0 to 1.2 can increase the MUSIQ metric from 70.15 to 71.60). Additionally, applying CFG requires
more inference time than PiSA-SR, since it needs to extract text prompts from LQ to generate conditional outputs.

6.3. Impact of LoRA rank

In our default setting, the ranks of both pixel-level and semantic-level LoRAs are set to 4. We conduct experiments by fixing
one LoRA rank at 4 and varying the other to observe how the performance on the RealSR [3] test dataset changes. The results
are shown in Table S4. Increasing the semantic-level LoRA rank enhances semantic details, as reflected in the CLIPIQA and
MUSIQ metrics. However, this comes at the cost of image fidelity, resulting in lower reference-based scores (e.g., LPIPS). A



Table S5. Ablation studies on the input timestep on the RealSR dataset.

Methods Input timestep PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MANIQA↑ MUSIQ↑
PiSA-SR 1 25.50 0.7417 0.2672 0.6702 0.6560 70.15

I1 250 25.52 0.7398 0.2685 0.6705 0.6572 70.05
I2 500 25.42 0.7383 0.2699 0.6728 0.6596 70.09
I3 750 25.38 0.7376 0.2701 0.6750 0.6598 70.11
I4 999 25.25 0.7330 0.2707 0.6813 0.6628 70.26

Figure S4. Comparison between OSEDiff and PiSA-SR: (a) Training memory consumption and time per iteration, and (b) performance
(LPIPS [21] and MANIQA [16]) on the RealSR test dataset across training iterations. Experiments are conducted on a single NVIDIA
A100 80G GPU with a batch size of 4.

similar pattern can be observed for pixel-level LoRA. Raising its rank improves fidelity, as shown by the SSIM and LPIPS,
but reduces some image details, leading to a drop in no-reference metrics (e.g., MUSIQ). Overall, increasing the LoRA rank
for one task (pixel-level or semantic-level enhancement) improves its performance but deteriorates the other. This is due to
the inherent conflict between these two tasks [2]. We choose a rank of 4 for both LoRA modules as it offers a good balance.

6.4. Impact of the input timestep

In one-step DM-based SR methods, the input timestep must be set in advance. By default, we use a value of 1. Table S5
presents the performance of different timestep configurations on the RealSR [3] test dataset. Generally speaking, increasing
the input timestep enhances the semantic details in the restored images but worsens the fidelity performance. This is because
the pre-trained models with larger input timestep have stronger denoising capabilities, which improve the generation capabil-
ity but reduce the ability to preserve the input structures. In PiSA-SR, we set the input timestep to 1 to retain the LQ image
information as much as possible.

6.5. Comparison with OSEDiff

In Sec. 4.3 of the main paper, we present both quantitative and qualitative comparisons between PiSA-SR and OSEDiff [14].
Here, we compare them in three additional aspects: training memory usage, training time per iteration, and convergence
speed. PiSA-SR uses the CSD loss [19] for semantic enhancement, while OSEDiff employs the VSD loss [12] for distillation.
As discussed in Sec. 3.3 of the main paper, optimizing with the CSD loss provides richer semantic information for the SR
model than VSD. Furthermore, CSD does not require bi-level optimization, significantly reducing training memory usage
and training time per iteration, as shown in Fig. S4 (a). PiSA-SR formulates the SR task by learning the residual between
LQ and HQ latent features (see Sec. 3.1 of the main paper), accelerating training convergence as evidenced in Fig. S5, where
PiSA-SR restores clearer text faster than OSEDiff during the first 2000 training iterations.

We also compare the behaviors of PiSA-SR and OSEDiff over the training process, measured by the reference-based



Figure S5. Visual comparisons of SR results from OSEDiff and PiSA-SR across 1 to 2000 training iterations.

LPIPS and no-reference-based MANIQA metrics, as shown in Fig. S4 (b). In the first 4K iterations, PiSA-SR focuses on
pixel-level LoRA optimization, improving LPIPS but slightly worsening MANIQA. Because OSEDiff applies LPIPS and
VSD losses throughout the training process, it initially outperforms PiSA-SR in MANIQA. After 4K iterations, PiSA-SR
begins optimizing the semantic-level LoRA. Thanks to its faster convergence, PiSA-SR outperforms OSEDiff in LPIPS and
MANIQA between 4K and 6K iterations. Beyond 6K iterations, both methods continue to improve, but PiSA-SR consistently
demonstrates superior performance throughout the training process. Overall, PiSA-SR achieves faster training speeds and
lower memory consumption than OSEDiff, despite utilizing pixel-level and semantic-level optimizations.
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