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Supplementary Material

6. Test-time Dynamic and Hierarchical Cache
Construction and Adaptation

The overall pipeline of Point-Cache is described in Alg. 1.
This pipeline consists of five steps, corresponding to the five
modules illustrated in Fig. 2 of the main paper. Below, we
explain several key operations in the algorithm.

Algorithm 1: Test-time Dynamic and Hierarchical
Cache Construction and Adaptation

[x === 1. Input ————- */
Data: online test data, point cloud descriptions 7',
number of classes C, upper bound K,
hyperparameters 7, og, B4, o, 3
Result: adapted class logits y
while test sample Q do
[x ————= 2.
el el = f,(Q);
e = fi(T);
compute ¥, = {9:|, } using Eq. ;
obtain class I = arg max{#;|7_, } ;

Encode

num = count(Cy, I:) ;

compute entropy h = — Zil Ui log Us;

[*x === 3. Update

if num < K then

put (7, ﬁ, h) into global cache C;

put (efl7 I:) into local cache C;;

else

hmaz = retrieve(Cy, fL);

(egmar, ﬁ, hmaz) =locate(Cg, L, hmaz);

(ei;m“"”, I:) = locate(Cy, L, hmaz);

if h < hyeo then
©%"%, L, hinaa) < (€3, L, h):;
(ehm7, L) (e, L;

end

end

[ ————= 4. Compute
compute y, using Eq. 2;
compute ¥, using Eq. 3;

[x ————= 5. Adapt @ ———- */
adapt ¥, and obtain new logits ¥ using Eq. 4;
return y;

end

e The function ‘count(Cg,ﬁ)’ calculates the number of
cached fingerprints belonging to class L in the global
cache C,.

« The function ‘retrieve(C,, L)’ returns the maximum en-
tropy among the cached fingerprints of class Lin C,.

* The function ‘locate(C,, E, hmaz) identifies the finger-
print with the highest entropy for class Lin C,. Similarly,
‘locate(Cy, ﬁ, hmaz)’ performs the same operation in the
local cache C;.

* The operator <— indicates that the fingerprint with the
highest entropy is replaced by the fingerprint of the cur-
rent sample Q if h < hyqz-

7. Implementation Details

For the point encoder in ULIP [72] and ULIP-2 [73], we use
PointBert [77] as the backbone. For the point encoder in
OpenShape [29], we utilize the scaled version of PointBert
(32.1M parameters), as detailed in Table 4 of the Appendix
in the corresponding paper. For Uni3D, we employ the giant
version, where the point encoder has 1,016.5M parameters.
The pre-trained weights for these models are obtained from
their public GitHub repositories. The zero-shot recognition
accuracy (%) of the various large 3D models are the base-
lines for comparison.

Rather than relying on a single fixed template (e.g., ‘a
point cloud object of a {class}’) to describe a point cloud,
we adopt 64 text templates to generate diverse descriptions
of 3D objects, as in ULIP [72] and Point-PRC [50]. These
descriptions are encoded into 64 text embeddings, which
are then averaged to create a feature representation for a
specific class.

8. Additional Results and Analysis
8.1. Test-time Robustness and Generalization

Robustness against data corruptions. We also create the
corrupted versions for the three splits of ScanObjectNN ac-
cording to the atomic operations in ModelNet-C [43] and
conduct experiments on them. The results are reported
in Tab. 5, 6 and 7. The proposed global and hierarchi-
cal cache models bring consistent and significant improve-
ments across backbones, datasets and corruption types. For
instance, +6.61% for ULIP on S-OBJ_ONLY-C, +6.05% for
Uni3D on S-OBJ_BG-C, and +5.72% for OpenShape on S-
PB_T50-_RS-C across 7 corruptions, compared to the cor-
responding zero-shot predictions. The results verify the ef-



fectiveness of Point-Cache in strengthening the robustness
of large 3D model against data corruptions. Likewise as
the observations from Tab. 1, the gains are not limited to
corrupted data. Point-Cache also boosts the recognition ac-
curacy of various models on original clean data.
Generalization from simulated to real data. We investi-
gate the performances of Point-Cache on Sim-to-Real [19],
which is used to evaluate the generalization from simu-
lated data (in the source domain) to real data (in the tar-
get domain). Sim-to-Real introduces two evaluation set-
tings: MN_11 — SONN_11 and SN_9 — SONN_9. MN is
short for ModelNet, SN is short for ShapeNet and SONN is
short for ScanObjectNN. SONN has three splits, as shown
in Tab. 8. The results suggest our global cache model sub-
stantially raise the zero-shot accuracy of various large 3D
models, e.g., +3.77% based on Uni3D. Also, the hierarchi-
cal cache model leads the global one by a clear margin, e.g.,
+3.46% based on ULIP-2 across 6 datasets, revealing the ef-
fectiveness of local cache again. Note that we also compare
with prior strong baselines that are trained on the source do-
main, such as MetaSets [19], PDG [67] and I-OODG [86].
In contrast, Point-Cache is directly transferred to the tar-
get datasets of Sim-to-Real and totally training-free. As a
result, we attain competitive or even better performances
compared to those learning-based baselines.

8.2. Total Size of Full Hierarchical Cache

Here we explain how to calculate the total size of full hierar-
chical cache. The variables listed in Tab. 10 are vital to de-
cide the total size of full hierarchical cache C, U C;, includ-
ing the feature dimension d of ej and ei), the upper bound
K on the number of samples in each category, the number
of parts m of a point cloud, and the number of classes C' in
the dataset.

Here we take (Uni3D, O-LVIS, Hierarchical Cache) as
an example for computing the size of each item in the global
and local cache.

* Eg: 1156%3*%512 =1,775,616

* L, 1156%3 = 3,468

* h,: 1156%3 = 3,468

e E;: 1156%3%3%512 = 5,326,848

o L;: 1156%3%3 = 10,404

So the total size of full hierarchical cache for (Uni3D,
O-LVIS) is sum of these items, approximately 7.1M. We
present the parameter counting for other backbones in
Tab. 11. The results demonstrate the total size of a full
hierarchical cache is very small, e.g., 7.1M, particularly
when compared to the hundreds of millions of parameters
in a large multimodal 3D model, e.g., 1016.5M in Uni3D.
Therefore, Point-Cache introduces minimal additional com-
putational and storage overhead, having little impact on
memory usage and runtime efficiency, indicated by Tab. 3
and Tab. 4 of the main paper.

8.3. Memory Usage and Throughput

Memory. We compare the memory usage based on other
large 3D models such as ULIP, ULIP-2 and OpenShape. In
the experiments, a point cloud contains 1,024 points. The
results are recorded in Tab. 12, 13 and 14. #Params count
the total parameters in a large multimodal 3D model. We
observe that our global and hierarchical cache model utilize
same or slightly higher memory compared to the zero-shot
baseline across backbones and datasets. For instance, Open-
Shape powered by our global cache consumes 7,058 MB
GPU memory, same as the usage of zero-shot OpenShape.
Moreover, with the number of 3D classes increasing rapidly,
e.g., 40 — 216 — 1,156, the memory rises slowly, e.g.,
1,556 — 1,558 — 1,570 for ULIP-2 with our hierarchi-
cal cache. The reason is same as we explained in the main
paper: memory consumption is dominated by the numerous
parameters of the large 3D model (e.g., 32.3M #Params in
the OpenShape point encoder alone) and the overhead of
Point-Cache is ignorable.

Throughput. We test the throughput of Point-Cache on S-
OBJ_ONLY and report the results in Tab. 16. The through-
put is measured by the number of test samples per second
(t/s) the model can process. Models with our global and
hierarchical cache run slightly slower than zero-shot in-
ference, e.g., a 0.03 ¢/s drop for OpenShape with global
cache and a 0.05 ¢/s drop for OpenShape with hierarchical
cache, suggesting little computational overhead introduced
by Point-Cache. In theory, the throughput is decided by the
model itself and the GPU device used, instead of the dataset.
In practice, the throughput on S-OBJ_ONLY is consistent
with that on ModelNet40, as shown in Tab. 4 of the main

paper.
8.4. Other Cache Models

Comparison with other cache models. There are only
a few 3D point cloud cache models (Point-PEFT [46],
BFTT3D [59] and Point-NN [73]). They have different
pipelines and settings, making fair comparisons difficult,
e.g., (1) they use the entire training set (with real labels) to
construct the cache offline, whereas Point-Cache constructs
the cache using test data (without real labels) online; (2)
they are not based on large 3D models and cannot recog-
nize new classes in Omni3D and O-LVIS. In Tab. 17, we
add comparisons with Point-NN (not a test-time method).
The performance of Point-NN is expectedly better since it
uses the real labels and the whole training set to build the
cache.

9. Visualization
9.1. Relation with Previous Methods

Tab. 18 highlights the differences between existing cache
models and Point-Cache. The proposed approach is a dy-



Table 5. Comparison of recognition accuracy on S-OBJ_ONLY-C that includes 7 types of corruptions. Results are reported for
a corruption severity level of 2. Each clean point cloud contains 1024 points. The last column is the average across the 7 types of
corruptions. SONN: ScanObjectNN.

Original Data Corruption Type
Method SONN AddGlobal _Add Local Drop Global _Drop Local _Rofate  Scale  Jiwer Y&
ULIP [72] 49.05 31.50 34.77 51.29 38.38 4836 4458 3683  40.82
+Global Cache(Ours) 52.15 35.80 37.01 54.39 41.82 4974 4509 4028  43.45
+Hierarchical Cache(Ours) 52.15 32.01 38.04 54.56 4527 5095 4596 3924 4372
ULIP-2 [73] 42.00 40.45 4131 37.69 30.29 3821 4445 2289 3647
+Global Cache(Ours) 48.19 49.05 46.30 45.09 37.18 41.65 4441 2599 41.38
+Hierarchical Cache(Ours) 51.98 49.05 46.30 48.88 40.45 4578  45.09 2599 43.08
O-Shape [29] 53.18 4991 46.30 52.15 36.66 4664 4682 3081 44.18
+Global Cache(Ours) 56.80 56.45 51.98 54.56 4045 51.81 4923 37.69 48.88
+Hierarchical Cache(Ours) 58.69 59.04 53.01 55.94 41.82 SII2 4854 3941 49.84
Uni3D [88] 65.58 62.65 56.45 60.07 49.40 6162 5611 4355 5569
+Global Cache(Ours) 70.05 65.06 59.38 63.68 54.39 6334 6007 5129 59.60
+Hierarchical Cache(Ours) 70.22 65.40 58.00 64.20 54.91 6196 6213 5318 59.97

Table 6. Comparison of recognition accuracy on S-OBJ_BG-C that includes 7 types of corruptions. The results are reported for a
corruption severity level of 2. Each clean point cloud has 1024 points. The last column is the average across the 7 types of corruptions.

Original Data Corruption Type
Method SONN Add Global ~AddLocal Drop Global Drop Local Rotate  Scale  Jitter Ave.
ULIP [72] 45.96 27.19 25.82 45.61 34.25 40.96  40.10 3098 34.99
+Global Cache(Ours) 48.88 30.46 30.46 49.05 39.59 4492 4217 31.84 38.36
+Hierarchical Cache(Ours) 49.74 28.23 30.12 48.71 40.45 43.55 40.28 3442 3797
ULIP-2 [73] 48.19 40.62 38.90 39.24 32.36 41.14 4286 21.17 36.61
+Global Cache(Ours) 52.50 48.19 45.09 46.82 39.07 46.64  48.02 26.51 4291
+Hierarchical Cache(Ours) 54.73 51.64 47.16 50.95 39.76 53.01 51.81 2272 45.29
O-Shape [29] 55.94 49.40 48.19 52.67 42.51 48.88 47.16 31.84 4581
+Global Cache(Ours) 59.72 57.49 51.12 59.72 48.71 56.11 54.22 3528 51.81
+Hierarchical Cache(Ours) 62.65 58.00 51.64 59.55 47.85 5491 5336 3649 51.69
Uni3D [88] 60.24 58.00 52.32 51.64 44.23 58.00 51.81 39.24 50.75
+Global Cache(Ours) 63.86 66.27 57.83 56.11 50.77 61.62 56.11 4423 56.13
+Hierarchical Cache(Ours) 62.82 64.72 57.14 58.52 5043 6093 59.55 4630 56.80

namic and hierarchical cache model that is constructed en-
tirely based on test data for test-time point cloud recogni-
tion.

9.2. Point Cloud Encoding

(e.g., 5) centers using K-Means, resulting in e}, € R™*<, as
depicted in Fig. 9 (b).

9.3. The Global and Local Cache

Fig. 9 illustrates the detailed process of point cloud encod- Fig. 10 visualizes the global cache C, and the local cache

ing, corresponding to the ‘Encode’ component of Fig. 2
in the main paper. For an input point cloud P € RV*3,
we first perform farthest point sampling to obtain M key
points. Next, we search for k nearest neighbors for each
key point to form M local point patches, which are trans-
formed by a lightweight neural network (e.g., 2-layer MLP
in ViPFormer [49] or mini-PointNet [39] in PointBert [77]),
as shown in Fig. 9 (a). Subsequently, a class token, along
with the flattened point patches, is fed into the Transformer-
based point encoder, generating the global feature e € R¢
and local-part features. To save memory and computation,
these local-part features (e.g. 512 in ULIP-2[73]) into m

C;. C, stores up to K global fingerprints (e, L, h) per
class from online test samples, while C; records the local
fingerprints (e;, ﬁ) of corresponding samples. The global
and local caches are empty at the beginning and then accept
the fingerprints of online test samples. Both C, and C; are
dynamically managed to prioritize high-quality samples, as
outlined in Alg. 1. Note that the global and local caches
are not necessarily full. This hierarchical design and the
selective mechanism enable the creation of an more accu-
rate profile for test data than previous cache methods, facil-
itating robust and generalizable point cloud analysis at test
time.



Table 7. Comparison of corruption generalization on S-PB_T50-_RS-C, which is the hardest split of ScanObjectNN is used. Each clean
point cloud is represented by 1024 points. SONN is short for ScanObjectNN.

Original Data Corruption Type
Method SONN Add Global —Add Local  Drop Global _ Drop Local Rotate  Scale  Jimer V&
ULIP [72] 29.29 19.26 18.39 30.99 23.91 2748 2634 2144 2397
+Global Cache(Ours) 32.37 22.87 20.85 3331 27.90 30.85 28.63 2453  26.99
+Hierarchical Cache(Ours) 3248 23.46 22.69 34.70 3175 33.00 2828 2505 2842
ULIP-2 [73] 33.38 30.29 29.42 28.24 24.91 2856 3022 1298 2637
+Global Cache(Ours) 40.28 36.40 33.80 35.39 30.88 33.66 3501 1836 31.93
+Hierarchical Cache(Ours) 42.40 35.70 34.42 3775 34.21 3626 3609 1912 33.36
O-Shape [29] 41.12 32.41 35.60 37.80 27.34 36.61 3522 18.88 31.98
+Global Cache(Ours) 42.16 40.32 37.58 42.02 33.76 4153 3824 24.12  36.80
+Hierarchical Cache(Ours) 43.72 40.91 39.24 43.03 35.22 43.06 37.40 25.05 37.70
Uni3D [88] 46.04 4823 37.99 36.75 31.47 4400 3737 2866 37.38
+Global Cache(Ours) 50.28 52.57 42.23 4261 36.29 4722 39.83 3348 42.03
+Hierarchical Cache(Ours) 51.13 51.67 41.88 44.59 38.79 49.03  41.05 3470 43.10

Table 8. Comparison of recognition accuracy on Sim-to-Real. Two evaluation settings are considered: MN_11 — SONN_11 and SN_9
— SONN_9. The dataset on the left side of — stands for simulated data, while the dataset on the right side indicates real-world data. 11
classes are shared between MN_11 and SONN_11, while 9 classes are common between SN_9 and SONN_9. The last column shows the
average accuracy across 6 datasets. In the experiments, each point cloud is represented by 2,048 points. MN: ModelNet, SN: ShapeNet,
-P: PointNet, -D: DGCNN. Note that our methods are training-free while prior methods (e.g., PDG, MetaSets) use the full training set

to build their models.

MN_11 — SONN_11

SN_9 — SONN_9

ini 9

Method Training? —Spr—GBIBG  PB.TS0RS OBl OBIBG PB.TS0RS &
MetaSets-P [19] v 60.3 52.4 47.4 51.8 443 45.6 50.3

MetaSets-D [19] v 58.4 59.3 483 49.8 474 42.7 51.0
PDG-P [67] v 67.6 58.5 56.6 573 513 513 57.1

PDG-D [67] v 65.3 65.4 552 59.1 59.3 51.0 59.2
1-00DG [86] v - 69.8 - - 59.8 - 64.8

ULIP [72] X 5705 5032 32.60 61.00  61.00 44.38 51.06
+Global Cache(Ours) X 62.32 5263 34.97 65.50 6250 47.36 54.21
+Hierarchical Cache(Ours) X 6442  56.63 35.77 6725  64.50 47.61 56.03
ULIP-2 [73] X 5242 53.89 41.57 5150  59.25 46.35 50.83
+Global Cache(Ours) X 57.05 5937 47.38 5675  65.75 50.68 56.16
+Hierarchical Cache(Ours) X 59.16 60.84 49.87 61.75 71.00 55.11 59.62
OpenShape [29] X 62.32 6442 48.52 64.00 7025 53.55 60.51
+Global Cache(Ours) X 65.68  69.05 49.36 7100 71.50 55.67 63.71
+ Hierarchical Cache X 6653  70.74 50.59 7150  71.00 56.57 64.49
Uni3D [88] X 7263 7453 55.76 7550 77.00 57.98 68.90
+Global Cache(Ours) X 7621 7726 59.10 80.00  81.00 62.47 72.67
+Hierarchical Cache(Ours) X 7411 76.00 57.92 83.00  81.50 63.98 72.75

9.4. Qualitative Analysis

We provide additional qualitative examples to demonstrate
the step-by-step adaptation process of various large 3D
models with Point-Cache, exhibited in Fig. 11, 12, 13 and
14. The results confirm that Point-Cache effectively assists
large 3D models in correcting erroneous zero-shot predic-
tions, reducing the classification entropy, and improving the
recognition accuracy at test time. Notably, there are cases
where the global cache model fails to adapt zero-shot pre-
dictions. For example, in the third row of Fig. 12, although

ULIP-2+GC reduces the class probability for ‘sink’ from
73% to 53%, it still identifies ‘sink’ as the top-1 class. In
contrast, ULIP-2+HC makes a sharp adjustment to the log-
its of ULIP-2+GC after incorporating local-part knowledge,
promoting ‘toilet’ to the top-1 class (from 41% to 90%) and
achieving a successful correction. Similar adaptations are
observed in Fig. 11 (1st, 2nd, 4th, and 5th rows), Fig. 13
(1st, 4th, and 5th rows), and Fig. 14 (1st, 2nd, 3rd, and
6th rows), suggesting that the coarse-to-fine cache design is
highly effective in capturing subtle differences among point
cloud objects.



Table 9. Comparison of recognition accuracy across a suite of datasets (no_lvis weights). S-PB_RS_T50 is the hardest split of ScanOb-
jectNN. O-LVIS: Objaverse-LVIS. Omni3D: OmniObject3D. In Omni3D, each point cloud can be represented by a different number of
points (pts). Note that Omni3D has 216 classes and O-LVIS has 1,156 classes. The last column is the average accuracy on these datasets.

Omni3D

Method ModelNet40 ~ S-PB_RS_T50  O-LVIS 1024 pis 4096 pts 16384 pis Avg.
O-Shape [29] 85.05 54.01 47.17 33.64 34.16 34.25 48.05
+Global Cache(Ours) 85.74 57.06 47.06 37.11 38.53 38.07 50.60
+Hierarchical Cache(Ours) 85.70 56.40 45.69 37.46 38.36 38.05 50.28
Uni3D [88] 87.07 66.37 47.24 30.08 38.10 38.04 51.15
+Global Cache(Ours) 87.93 68.58 47.51 33.23 39.51 40.27 52.84
+Hierarchical Cache(Ours) 87.84 67.96 46.81 33.91 39.49 40.49 52.75

Table 10. Statistics of feature dimension d, number of shots K
per class, number of parts m per point cloud, and number of
classes C' in the dataset. The used dataset is O-LVIS.

Backbone ddims K shots mparts C classes
ULIP 512 3 3 1,156
ULIP-2 512 3 3 1,156
OpenShape 1,280 3 3 1,156
Uni3D 512 3 3 1,156

Table 11. Parameter count for the full hierarchical cache on
O-LVIS, which covers 1,156 classes. Capital letters in brackets
indicate units of measurement.

Global Cache Local Cache Total

Backbone Eg, Ly, hy E;, L; Size
(K) X X) K  X® M)

ULIP 17756 35 35 5326.8 104 7.1
ULIP-2 17756 35 3.5 53268 104 7.1
O-Shape 4439.0 35 35 13,317.1 104 17.8
Uni3D 17756 35 3.5 5326.8 104 7.1

Table 12. Comparison of memory usage (MB) based on ULIP.
The batch size is set to 1, and the experiments are conducted on
an RTX 4090. The number below each dataset name indicates
#Classes.

ModelNet-C~ Omni3D  O-LVIS
Method (40) 216) (1.156) #Params
ULIP 1,556 1,558 1,556 85.7M
+Global(Ours) 1,556 1,558 1,560 85.7M
+Hierar(Ours) 1,556 1,558 1,566 85.7M

Table 13. Comparison of memory usage (MB) based on ULIP-
2. The batch size is set to 1, and the experiments are conducted
on an RTX 4090. The number below each dataset name indicates
#Classes.

ModelNet-C =~ Omni3D  O-LVIS

Method (40) 216) (1.156) #Params
ULIP-2 1,556 1,558 1,556 85.7M
+Global(Ours) 1,556 1,558 1,560 85.7M
+Hierar(Ours) 1,556 1,558 1,570 85.7M

Table 14. Comparison of memory usage (MB) based on Open-
Shape. The batch size is set to 1, and the experiments are con-
ducted on an RTX 4090. The number below each dataset name
indicates #Classes.

ModelNet-C~ Omni3D  O-LVIS
Method (40) 216) (1,156) #Params
OpenShape 7,056 7,058 7,116 2,571.9M
+Global(Ours) 7,056 7,058 7,126 2,571.9M
+Hierar(Ours) 7,058 7,062 7,150 2,571.9M

Table 15. Comparison of memory usage (MB) based on Uni3D.
The batch size is set to 1, and the experiments are conducted on
an RTX 4090. The number below each dataset name indicates
#Classes.

ModelNet-C~ Omni3D  O-LVIS
Method (40) 216) (1.156) #Params
Uni3D 5,062 5,062 5,062 1711.7M
+Global(Ours) 5,062 5,064 5,070 1711.7M
+Hierar(Ours) 5,064 5,068 5,090 1711.7M

Table 16. Comparison of running throughput (¢/s) for differ-
ent models on S-OBJ_ONLY. Each point cloud contains 1024
points. The batch size is set to 1 and the used device is an RTX
4090. The results are averaged over all test samples.

Method Zero-shot  +Global(Ours)  +Hierar(Ours)
ULIP 11.19 11.16 11.14
ULIP-2 11.19 11.15 11.14
OpenShape 9.86 9.83 9.81
Uni3D 9.62 9.59 9.58

Table 17. Comparison with Point-NN. The comparison is unfair
since Point-NN uses the training set to construct an offline cache.

Model ModelNet ScanObjectNN (1,024 points)
(1,024 points)  OBJ.ONLY OBJ.BG  PB_T50_RS
Point-NN 81.65 72.46 71.26 62.80
Uni3D 81.81 65.58 60.24 46.04
+Global 83.14 70.05 63.86 50.28
+Hierar 83.87 70.22 62.82 51.53




Table 18. Comparison with other cache models. In the first
row, we select several key attributes of the cache models for com-
parison. ‘Test-time’ means whether the model is developed for
test-time adaptation. ‘T-set’ indicates whether the cache model is
solely built on the test set. ‘Dynamic’ and ‘Hierarchical’ repre-
sent whether the cache is dynamically managed and designed in a
coarse-to-fine manner, respectively.

Cache Model Test-time  T-setonly  Dynamic  Hierarchical
Point-NN [84] X X X X
Point-PEFT [53] X X X X
BFTT3D [66] v X X X
Point-Cache v v v v
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Figure 8. Illustration of Point-Cache as a plug-and-play module. We record global and local-part 3D features of high-quality test
samples in the hierarchical cache. Then the hierarchical cache can be employed to adapt the zero-shot predictions of various large multi-

modal 3D models.
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Figure 9. Visualization of point cloud encoding. Subfigure (a) illustrates the process of producing point patches, while subfigure (b)
explains how the global feature and local-part features are generated.
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Figure 10. Simulation of the global cache and local cache. An upper bound K is set for the number of samples per class in the cache.
The local fingerprint (eé, l:) of a sample P is stored in the local cache only if its global fingerprint (e, L, h) qualifies for inclusion in the
global cache. The global and local caches are initially empty and then updated according to Alg. 1. However, the global and local caches
are not necessarily full. The full status of Point-Cache is determined by storing K global and local fingerprints in each of C' categories.
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Figure 11. ULIP zero-shot predictions before and after adaptation by Point-Cache. The used dataset S-OBJ_ONLY-C (rotate, sever-
ity=2). Each 3D object contains 1,024 points. GC: global cache. HC: hierarchical cache.
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Figure 12. ULIP-2 zero-shot predictions before and after adaptation by Point-Cache. The used dataset is S-PB_T50_RS. Each 3D
object contains 1,024 points. GC: global cache. HC: hierarchical cache.
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Figure 13. OpenShape zero-shot predictions before and after adaptation by Point-Cache. The used dataset is ModelNet-C (drop_local,
severity=2). Each 3D object contains 1,024 points. GC: global cache. HC: hierarchical cache.
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Figure 14. Uni3D zero-shot predictions before and after adaptation by Point-Cache. The used dataset is Omni3D. Each 3D object
contains 4,096 points. GC: global cache. HC: hierarchical cache.
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