PolarNeXt: Rethink Instance Segmentation with Polar Representation

Supplementary Material

Here we provide more details on the design principles
and experimental results for our proposed method. An
overview of this supplementary material is as follows:

* Section 1: More Details for Our Baseline PolarMask.
* Section 2: More Details for Representation Errors.

* Section 3: More Details for Our Proposed PolarNeXt.
e Section 4: What Makes for PolarNeXt?

¢ Section 5: Qualitative Results.

1. More Details for Our Baseline PolarMask

1.1. Polar Representation

PolarMask [7] formulates instance segmentation as starting
point classification and dense distance regression. Given
a starting point 3(x,y) and a distance set of m rays D =
{Ji li = 1,2,...,m}, the coordinate of each vertex v;(;, y;)
of predicted polygon P can be formulated as follows:
{ xi:cosﬁixiji—l—x )
yi:Sin9¢Xdi+y ’

where 6; is the fixed angle between the i-th ray and polar
axis. Starting from v; to v,,, these vertices are connected
one by one to finally assemble predicted polygon P. In this
paper, our proposed PolarNeXt inherits this representation
without any modification.

1.2. Network Architecture

PolarMask is directly constructed on one-stage object de-
tector FCOS [6], with extended prediction heads. Specifi-
cally, the prediction heads consist of four parts: a classifi-
cation head for starting point, a regression head for dense
distance, a Centerness head for Polar Centerness, and an
auxiliary box head. Experimental results indicate that re-
moving the auxiliary box head results in a 0.1~0.5% AP
drop in PolarMask. In contrast, this operation has no impact
on performance in our proposed PolarNeXt, while slightly
reducing computational cost and inference time. Therefore,
we have opted to remove this head for acceleration and sim-
plification.

1.3. Center Prior

The center prior fully dictates the sample decisions of Po-
larMask during training. In label assignment, each instance
is distributed to a specified FPN [5] layer based on its size
(e.g., the size range is [0, 64] for P3 layer and [64, 128]
for P4 layer). Then, Center Sampling is applied on the cor-
responding FPN layer of each instance, assigning positive
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Figure 1. Illustration of the divergence between Box Representa-
tion and Polar Representation. The upper part compares the work-
flows of these two representations, and the lower part compares the
boxes/polygons constructed from different starting points. "GT” is
the abbreviation for Ground Truth.
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Figure 2. Comparison of two types of starting point selection.
Each color bar corresponds to an IoU interval, with its length rep-
resenting the proportion of instances within that interval.

labels to the samples around the center point'. In sam-
ple weighting, Polar Centerness serves as a quality score
to modulate the weight of each positive sample. Assuming
target distance set D = {d;|i = 1,2,...,m} and predicted
distance set D = {d,|i = 1,2, ..., m}, Polar Centerness can
be calculated as follows:

min({dlv d27 eeey dM})
max({dy,da,...,dm})"

Notably, if a ray has no intersection with the contour, its
distance will be set to 0. This rule enforces a Centerness

Polar Centerness = \/ 2)

ICenter Point: the center point typically refers to the instance mass
center in Polar Representation, while it denotes the bounding box center in
Box Representation.



Method AP | APy APy APy
Baseline 29.1 | 133 313 426
Image-aligned | 31.3 | 13.9 339 47.1
Union-aligned | 33.9 | 164 359 494

Table 1. Analysis of different strategies for coordinate alignment.
Image-aligned: alignment using the entire image; Union-aligned:
alignment using the Union Box.

Quality Score | AP | AP5y AP
Centerness 29.1 | 49.6 29.7
Polar IoU 294 | 50.6 30.0

1 - Cost 29.8 | 51.8 30.1
RMask IoU | 30.3 | 51.2 31.2

Table 2. Analysis of different quality scores for sample weighting.

of 0 for the samples outside. In this paper, we apply Center
Sampling across all FPN layers and replace Centerness with
our proposed RMask IoU as the quality score.

1.4. Polar IoU

Polar IoU is a metric for polygonal assessment, which com-
pares the consistency between distance sets D and D. Polar
IoU and its variation Polar IoU Loss can be formulated as
follows:

>, min(d;, d;)

Polar IoU = =~ —,
Zi:l max(dh dz)

3)

o max(d;, d;)
2211 min(di, dl)
Obviously, these two formulas are independent of the in-
stance contour, which exhibits significant assessment blind-
ness to representation errors. In this paper, we propose
RMask IoU and RMask IoU Loss for more reliable polygo-
nal assessment.

Polar IoU Loss = log 4

2. More Details for Representation Errors

2.1. The Source of Representation Errors

As shown in Fig. 1, Polar Representation is conceptually a
generalized form of Box Representation, using more con-
centric rays. However, a noteworthy observation is that
Box Representation does not exhibit representation errors,
whereas Polar Representation does. In light of this, we in-
vestigate the divergence between these two representations
to explain the source of representation errors. In Box Rep-
resentation, the position of starting points has no impact on
the quality of constructed boxes, as the ground truth is reg-
ular. Conversely, in Polar Representation, the position of
starting points is closely related to the capacity of polygons

sr/k | 1.5/6  1.5/12 1.5/9 1.2/9 1.8/9
AP | 338 337 339 331 338

Table 3. Performance impact of varying radius of Center Sampling
(s.r) and number of positive samples (k).

Ratio | 1:1:1:0.5 1:1:1:1  2:1:1:1  1:5:2:1
AP | 337 339 33 334

Table 4. Effectiveness of different combinations of loss coeffi-
cients.

to capture boundary details of the intricate ground truth. If
an inappropriate starting point is selected, the deviation be-
tween its bounding polygon and instance contour, i.e., the
representation error, will be amplified. As a result, select-
ing the starting points with minimal representation errors
may positively impact the segmentation accuracy.

2.2. The Motivation of the APSD Strategy

In this section, a statistical experiment is conducted to fur-
ther demonstrate the effectiveness of selecting the points
with minimal representation errors. We take the 36334 in-
stances in MS COCO val [4] as study cases and record their
IoU between instance contours and bounding polygons con-
structed from two types of starting points: the center point
(Central) and the optimal point (Optimal). According to the
IoU values, we divide these instances into six intervals and
calculate their proportion within each interval. As shown
in Fig. 2, the polygons constructed from the optimal points
are significantly superior to those constructed from the cen-
ter points, with a greater proportion in high-IoU intervals.
These observations motivate our proposed Adaptive Polyg-
onal Sample Decision strategy to enable optimal starting
point selection during inference.

3. More Details for Our Proposed PolarNeXt
3.1. Ablation Studies

Strategies for Coordinate Alignment. As introduced in
Section 3.3 of the main paper, coordinate alignment is nec-
essary before rasterization, given that no pre-predicted Rols
are available in one-stage detectors. Besides our proposed
Union-aligned strategy, another option is to use the entire
image as the window for alignment. As shown in Tab. 1,
although the Image-aligned strategy brings some perfor-
mance improvement, it is less effective than the Union-
aligned strategy. Notably, the performance improvement
decreases progressively across large, middle, and small ob-
jects (+4.5%/+2.6%/+0.6% AP). This may arise from the
fact that as the window size increases, the alignment opera-
tion results in more missed details in smaller objects.
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Figure 3. Visualization of Multi-layer Center Sampling (MCS).
The multi-layer features are extracted on the input image by FPN.
On each layer, Center Sampling (CS) is applied for a group of
candidate samples. These samples are visualized on the right and
combined onto a single plane for clearer understanding.

Quality Scores for Sample Weighting. As shown in
Tab. 2, we compare more feasible quality scores for sample
weighting. Among them, the strategy that directly replaces
Centerness with RMask IoU yields the largest performance
improvement, with an increase of 1.2% in AP.

3.2. Hyperparameters Tuning

Radius of Center Sampling and Number of Positive
Samples. In Tab. 3, we further investigate the hyperpa-
rameters of our proposed APSD, i.e., the radius of Center
Sampling (s.7) and the number of positive samples (k). Ex-
perimental results indicate that the effectiveness of {s.r.=1.5
/ k=9} surpasses other versions.

Loss coefficients. In Tab. 4, we explore some commonly
used combinations of loss coefficients Acis, Areg, Apoty, and
Asre- Experimental results indicate that the {1:1:1:1} ratio
achieves the best performance.

3.3. Why Center Prior still Works?

As demonstrated in Section 4.3 of the main paper, the cen-
ter prior still has a positive influence on sample decisions,
even though its role has diminished. Here, we provide two
additional experiments to further support this point:

Visualization of Multi-layer Center Sampling. As illus-
trated in Fig. 3, we perform a visualization of Multi-layer
Center Sampling (MCS) for a clear understanding of the
candidate selection in APSD. It is evident that MCS selects
samples with stronger receptive fields on each FPN layer,

APSD | AP APsy | APs APy APp
wlo. | 3777 573 | 199 408 505
w/. 389 579 | 222 420 511

Table 5. Effectiveness of APSD on the object detector FCOS.
”w/0.” and "w/.” denote the absence or presence of APSD, respec-
tively.
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Figure 4. Visualization of Classification Confidence and Polar
Centerness.

while also increasing coverage over instances to achieve
more candidates.

Correlation between Classification and Center Prior.
Furthermore, we compare the heatmaps of Classification
Confidence and Polar Centerness in Fig. 4. Within the red
circles, high-confidence predictions locate near the peak ar-
eas of Centerness. We believe that features closer to the
instance center tend to contain more complete instance in-
formation, which advances the network to recognize the ob-
jects.

4. What Makes for PolarNeXt?

4.1. TIDE Error Analysis

Fig. 6 shows the error analysis through TIDE [1] and com-
parisons between PolarMask and PolarNeXt. In detail, our
proposed PolarNeXt exhibits lower Miss error and Loc er-
ror. First, the reduction of Miss error by 1.3% and FN by
4.7% indicates that PolarNeXt can identify foreground ob-
jects more effectively than PolarMask, reducing the proba-
bility of missing detections. Second, the 2.0% decrease in
Loc error shows that the bounding polygons predicted by
PolarNeXt are more accurate than those predicted by Polar-
Mask, enabling improved instance localization.

4.2. Mitigation of Miss Error

To further investigate the source of the mitigation of Miss
error, our proposed APSD strategy is migrated to the classi-
cal object detector FCOS. Specifically, the matching cost is
obtained by a weighted summation of Focal Loss, Box IoU
Loss, and L1 Loss. Meanwhile, Box IoU is used as the qual-
ity score for sample weighting. As shown in Tab. 5, APSD



Figure 5. Qualitative Results of PolarNeXt on MS COCO val images.
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Figure 6. TIDE Error Analysis. We adopt TIDE [1] to compare
the errors of PolarMask and our proposed PolarNeXt. Cis: clas-
sification error; Loc: localization error; Miss: missing detections;
Bkg: background detections; Dupe: duplicated detections; Both:
Cls+Loc error.

continues to have a positive influence on object detection
tasks, slightly increasing the detection accuracy by 1.2%
AP. Therefore, we speculate that the mitigation of Miss error

class (higher) | airplane fork umbrella  dog cycle
PolarMask 314 7.1 39.7 46.9 26.6
PolarNeXt 39.7 13.8 45.8 52.0 31.2
impr. +8.3 +6.7 +6.1 +5.1 +4.6
class (lower) | hydrant parkmeter broccoli mouse hotdog
PolarMask 59.1 454 21.0 58.6 26.1
PolarNeXt 59.5 459 22.0 59.7 27.9
impr. +0.4 +0.5 +1.0 +1.1 +1.8

Table 6. Class-wise comparison on MS COCO val. All values
refer to mask AP in this table. “impr.” is the abbreviation for im-
provement.

may stem from the improvement in detection performance.

4.3. Mitigation of Loc Error

The mitigation of Loc error is relatively easier to explain.
As discussed in Section 4.4 of the main paper, PolarNeXt
significantly improves the boundary quality over Polar-
Mask, achieving a 3.5% increase in Boundary AP [2].
Moreover, we conduct a class-wise comparison experiment
on MS COCO val, where the top five classes with higher
and lower improvements are presented in Tab. 6. Obvi-
ously, the classes with higher improvements feature com-
plex boundaries with more disconnected and concave re-
gions, while the classes with lower improvements exhibit
regular boundaries. This suggests that our proposed ap-



proach is particularly effective for some instances with
complex contours.

5. Qualitative Results

Fig. 5 shows the qualitative results of PolarNeXt. Here,
the network uses R50-FPN [3] as the backbone, trained
with a 3x schedule. Experimental results show that our
proposed PolarNeXt can generate precise bounding poly-
gons for instance segmentation. For crowd and dense
scenes, PolarNeXt can also distinguish different instances
well.

References

[1] Daniel Bolya, Sean Foley, James Hays, and Judy Hoffman.
Tide: A general toolbox for identifying object detection er-
rors. In ECCV, pages 558-573, 2020. 3, 4

[2] Bowen Cheng, Ross Girshick, Piotr Dollar, Alexander C Berg,
and Alexander Kirillov. Boundary iou: Improving object-
centric image segmentation evaluation. In CVPR, pages
15334-15342,2021. 4

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770-778, 2016. 5

[4] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCYV, pages 740-755, 2014. 2

[5] Tsung-Yi Lin, Piotr Dolldr, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid net-
works for object detection. In CVPR, pages 2117-2125, 2017.
1

[6] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: A
simple and strong anchor-free object detector. /IEEE TPAMI,
44(4):1922-1933, 2020. 1

[7]1 Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Xuebo Liu,
Ding Liang, Chunhua Shen, and Ping Luo. Polarmask: Sin-
gle shot instance segmentation with polar representation. In
CVPR, pages 12193-12202, 2020. 1



