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Figure 1. Given four-view image streams and body motions from
the disk, our method generates photorealistic human renderings at
an interactive speed.

A. Overview

We present more details and experimental results of DUT
towards a more clear understanding and in-depth analysis.
We first show an interactive demo with our method (Sec. B).
Then, we offer additional details about the visibility com-
putation (Sec. C), loss function (Sec. D), implementation
details (Sec. E), runtime analysis (Sec. F), undeformed tex-
ture maps (Sec. L) and limitation discussions (Sec. M).
We also provide additional experimental results about influ-
ence with respect to motion capture qualities (Sec. G), out-
of-distribution motions (Sec. H), motion sensitivity analy-
sis (Sec. I), performance on a loose and long hair subject
(Sec. J), novel lighting (Sec. K). Tab. 4 lists notations and
symbols used in the main paper, and demonstrates their de-
scriptions.

B. Interactive Demo

To validate the potential of our method towards live telep-
resence, we built an interactive system to run our method

in an end-to-end manner. As illustrated in Fig. 1 and also
in the Supplementary Video, we load images and body mo-
tions from the disk of PC and perform live free-viewpoint
rendering controlled by a mouse.

C. Visibility Computation

For the methods [3, 10, 11] with texture unprojection, the
computation of visibility map is a crucial step, as the goal is
to preserve as much information as possible while correctly
unprojecting the pixels into the texel space. Here, we pro-
vide additional details about the visibility computation. As
presented in the Eq. 3, we use normal difference 7.218!¢:%,
depth difference 74Pt and segmentation masks 7 mask-?
as the visibility computation criteria.

The normal difference verification checks if an angle be-
tween the surface normal of the world space template and
the inverse ray direction from the cameras are roughly par-
allel to each other. Similar to HoloChar [11], we render the
normal texture maps 7 and position texture maps 75 of the
world space template in texel space. The normal difference
visibility is computed as:
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where o’ denotes the optical center of camera i and 7?ay is
the texture map of rays. In practice, we set 6 = 0.17 in all
the experiments.

We also perform depth difference verification to remove
the outlier points that are still on the same ray but on the
backside of the template. Following prior works [10, 11],
we render depth texture maps 775 and image coordinate tex-
ture maps 7;@, of the world space template in the texel space
and also depth maps Z}, in the image space. Then, we com-
pute depth difference visibility as :
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Figure 2. Compared to the visibility map computed by GHG [3], the visibility map computed by our method is more robust and accurate,

generating better unprojected texture map.

In practice, we set € = 0.02 in all the experiments.

Apart from the geometry guidance, we can also utilize
segmentation information to distinguish if points are in the
foreground or background. Thus, the segmentation visibil-
ity can be computed as:

7-Jnask,i = Tuv (7:(1}/7 i ) (4)

where T, represents the segmentation of image Z°.

Instead of geometry clues and segmentation clues,
GHG [3] employ the rasterized faces to check the visi-
bility. Specially, they first rasterize face indices to image
planes, all the rasterized faces’ visibility are tagged as 1.0.
Next, they render the face visibility into the texel space to
get the final visibility maps. However, we found this rou-
tine is not stable, leading to incorrectly unprojected textures
(Fig. 2). Thus, to fully explore the upper bound of their
method, we use our visibility computation method when re-
implementing their method.

D. Loss Function

In this section, we discuss more details about loss functions
and how they are computed.

Chamfer Distance. We use Chamfer distance to evaluate
the similarity between the vertices of posed deformed tem-
plate P = V (M, D) and ground truth point-clouds Pgr:
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where Ny is the vertex number of human template and
[P is the vertex number of Pgr.
Laplacian Loss. We apply a Laplacian loss on the posed

deformed template V(./\/l D) to ensure the smoothness

ZHA Ny, E

where E represents the edges of the human template and A
is the uniform Laplacian operator.

Isometry Loss. To prevent severe stretching of template
edges, we constrain the edge length of the deformed tem-
plate Tp(D, V)
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where &; is the edge set of vertex i, |£;| is the edge number
of &;. V(GL ;) represents indexing the vertices of edge e; ;
from V.

Normal Consistency Loss: A normal consistency loss is
used to improve the consistency between the normal of a
vertex and nearby vertices
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where M is the set of nearby vertices of vertex i, |[N;| is the
number of A;, and Np(v;) denotes the normal of vertex 4
on the deformed template Tp (D, V).

L1 Loss: We compute the L1 loss between rendered image
7’ and ground truth image 7 as:

L= |7 -1 (10)

SSIM Loss: SSIM loss is mainly used to maintain the struc-
ture similarity between rendered image Z’ and ground truth
image Z:

Lssia = 1 — SSIM(Z', ) (11)



IDMRF Loss: We additionally use IDMRF Loss [15]
for the perceptual regularization and encouraging high-
frequency details.

E. Implementation Details

Motion Capture and Template Tracking. We use a
marker-less motion capture approach [12, 14] to recover the
body motions for our method and HoloChar [11], which
takes images from 34 cameras as inputs. DVA [10] and
GHG [3] require SMPLX [9] as the human template. To
eliminate the influence of motion capture accuracy, we first
transform motions from Captury format to SMPLX for-
mat and refine the shape parameters and body parameters
with ground truth point-clouds. Notably, our method does
not need ground truth point-clouds for motion refinement
and can still work with sparse-view motion capture results
(Sec. G).

Training and Evaluation. The training views, condi-
tion views and evaluation views do not overlap, expect for
S2618. The training sequences and evaluation sequences
do not overlap, but they share similar types of motion. For
the new collected subject, we also have novel action types
that are totally out of the distribution of action types in the
training set (Tab. 2).

Our method. We implement all the modules of our method
in Pytorch [8]. To accelerate the computation of the tex-
ture unprojection, we use nvdiffrast [4] for parallel render-
ing and implement forward kinematics [7] and camera pro-
jection with the extension of Pytorch. The visualizer of our
interactive demo is built upon 3DGStream [13].

GHG. GHG [3] is a method for generalizable human ren-
dering, we use the offical code and official checkpoints of
inpainting network. With our tracked SMPLX and refined
visibility map, we freeze the weights of inpainting network
and train the Gaussian regressor for each subject respec-
tively.

HoloChar. For each subject, we first train the geometry
module [2] of HoloChar [11] with both point-clouds and
distance transformation images [ 1], and then use the official
code of HoloChar [11] to train the texture network and the
super resolution network.

DVA. With the official code, we train DVA [10] with our
tracked SMPLX and same training image splits.

ENeRF. Though ENeRF [5] is not designed for human ren-
derings, however, they have the generalization ability based
on the design. For each subject, we give same conditions
(four-view images) as our methods and finetune the pro-
vided official checkpoint.

F. Runtime Analysis

In this section, we discuss the detailed runtime performance
of each methods. Since all methods have different structures

of the networks and modeling strategies, we design a run-
time evaluation criterion for fair comparisons. More specifi-
cally, we neglect the data transportation time and assume an
ideal situation that a method receives data, processes data
and outputs rendering results. For each method and compo-
nent, we compute the average time of 100 frames to obtain
a stable runtime estimate, and perform it for three times to
obtain the final time.

ENeREF. After receiving conditioned images and novel cam-
era parameters, ENeRF [5] can be split into two stages,
ray sampling and model inference (including rendering).
For 1K resolution, the time of ray sampling is 7.84ms and
the time of model inference is 30.83ms, the total time is
38.68 ms and 25.85 FPS. For 4K resolution, the time of ray
sampling is 158.68ms and the time of model inference is
351.03ms, the total time is 509.72ms and 1.96 FPS.

DVA. We can also divide DVA [10] into two stages, model
inference and rendering. For 1K resolution, the time of
model inference is 33.90ms and the time of rendering is
7.53ms, the total time is 41.43ms and 24.13 FPS. For 4K
resolution, the time of model inference is 178.45ms and the
time of rendering is 7.62 ms, the total time is 186.07ms and
5.37 FPS.

HoloChar. HoloChar [11] includes three stages, geometry
inference, texture unprojection and texture inference. Their
1K rendering and 4K rendering are performed together, thus
we only report the time for once. The time of geometry
inference is 9.3499 ms, the time of texture unprojection is
28.3590 ms and the time of texture inference is 35.7566 ms,
the total time is 73.4655 ms and 13.6118 FPS. Notably, we
perform all the modules on a workstation with a single GPU
and obtain slightly better inference speed, compared to their
evaluation.

GHG. GHG [3] has four stages, position map rendering,
visibility map rendering, network inference and rendering.
Though, in the experiments, we use our visibility compu-
tation to obtain better performance of GHG (Sec. C). Here,
we only report the time performance of their original imple-
mentation. The time of position map rendering is 922.10ms
and the time of visibility map rendering is 2754.64ms. For
1K resolution, the time of model inference is 246.83ms
and the time of rendering is 214.37ms, the total time is
4137.96ms and 0.2416 FPS. For 4K resolution, the time of
model inference is 247.1433 ms and the time of rendering
is 213.87ms, the total time is 4137.77ms and 0.2416 FPS.

Ours. Our method contains two main stages, geometry
stage and appearance stage. Towards a more comprehensive
runtime analysis, we will split each stage into fine-grained
components and report the accumulated time to each com-
ponent. As illustrated in Tab. 1, our method finishes all the
operations within 30 ms. The rendering resolution does af-
fect the speed of our method. Besides, we found our method
has the potential for improvement when given more power-



Stage I Stage 11
GPU | Rnd Res | TexRes | Forward | Obtaining First | GeoNet | Obtaining Second | GauNet Rendering FPS
Kinematic | Unprojected Map | Inference | Unprojected Map | Inference
3090 1K 256 3.8723 7.6027 11.4430 14.6424 21.3143 | 23.5674 |42.43
3090 4K 256 3.8751 7.6097 11.5076 14.7454 214354 | 23.7146 |42.17
3090 1K 512 3.8669 7.5927 16.9868 20.3320 27.0508 | 29.4855 |33.91
3090 4K 512 3.8601 7.5768 16.9993 20.3178 27.0191 | 29.3762 |34.04
H100 1K 256 3.8130 6.9313 10.7382 13.3484 16.5124 | 18.7570 |53.31
H100| 4K 256 3.8489 6.9685 10.7392 13.3512 16.4705 | 18.7303 |53.39
H100 1K 512 3.7821 6.8754 12.9675 15.6070 18.7620 | 21.0133 |47.59
H100| 4K 512 3.8300 6.8982 12.9877 15.6178 18.7669 | 21.0022 [47.61

Table 1. Quantitative Ablation. Here, we demonstrate detailed runtime ablation of our methods with different texture resolutions (Tex
Res), rendering resolutions (Rnd Res) and GPUs. All the time in the table is the accumulated time from the beginning and their units are

milliseconds.
Training & Testing Action
Jogging Walking Looking Picking Up
Talking Waving Celebrating Jumping
Baseball Throwing Baseball Swing Boxing Goalkeeping
Penalty Kick Golf Archery Weight Lifting
Squating Jumping Jack Playing Instrument Dancing
Opening and Pushing Door|Playing Table Tennis|Playing Badminton| Giving Presentation
Drinking Using Phone Petting Animal Playing Hockey
Playing Tug of War Juggle Balls Playing Hula Hoop Bowling
Playing Volleyball Wrestling Stretching Mopping Floor
Digging Typing Cooking Using Spray
Applying Makeup
Out of Distribution Action
Shooting Surrender Fishing Standing long jump
Single-leg hop Frog Jumping Crawling Rolling on the Ground
Sleeping Ultraman
Table 2. The action types of body motions in the training split, testing split and out-of-distribution split.
Methods | Motion | Tex Res | PSNRT | SSIMT | LPIPS| | (ion capture methods could produce reasonable results with
Ours-Large | Sparse 512 30.0309 | 0.8722 | (01322 | gparse-view cameras, while our method could compensate
Ours-Large | Dense 512 30.0311 0.8722 0.1322 for motion capture quality to some extent.

Table 3. Quantitative Ablation. We evaluate the influence from
mocap quality. Our method still produces good results with sparse-
view captured motions.

ful GPU, i.e. H100.

G. Ablation on Mocap Quality

In Fig. 3, we evaluate how does the motion capture qual-
ity affect the performance of our method on S3. We use
the same mocap method [12, 14] but only using 4 condi-
tion views as the inputs, obtaining the sparse mocap results.
There is a small performance drop when replacing dense
motion capture with sparse motion capture on the PSNR
metric. We believe this is due to the fact that current mo-

H. Additional Comparisons on OOD Motions

In Fig. 3, we show additional quantitative comparisons be-
tween our method and HoloChar [1 1] on the sequences with
out-of-distribution motions. Our method produces consis-
tently better results, and also slower standard deviations. In
terms of PSNR, our method’s standard deviation is 1.411,
while HoloChar gets a standard deviation of 1.8912, which
reveals the robustness of our method to the OOD motions.

I. Sensitivity Analysis to Motion Errors

We show a sensitivity analysis by manually adding linear
motion capture errors to left elbow from 0° to 60°13" in
Fig. 4. Surprisingly, DUT produces good results within
7°46" error (0°, 3943, 7°46/) and reasonable results even
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Figure 3. Quantitative Comparison. We quantitatively compare the rendering results of our method and HoloChar [11] on out-of-
distribution human motions. Our method outputs consistently better rendering results.
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Figure 4. Motion Sensitivity Analysis to Increasing Errors. Our method still outputs reasonable results to different level of motion

capture errors at inference.

with 60°13” error.

J. Performance on Loose Clothing and Long
Hair Subject

In Fig. 5, we show a subject with dynamic long-hair wear-
ing a dress. Our geometry module recovers the coarse ge-
ometry of hair dynamics and dress. After which, our ren-
dering module faithfully generates high fidelity renderings.

K. Results under Novel Lighting Environment

Towards realistic application scenarios, once our method is
trained, we may run it with novel cameras under novel light-
ing environments. We can either perform color augmenta-
tion to the input views during training [16] or finetune the
model on the sparse input views captured under the new
illumination. We provide a preliminary result for this in
Fig. 6 where we finetuned the model on the input views
and isolated frames (not used in testing) in a new lighting
condition. After finetuning, DUT still runs in feed-forward
manner. Our method can be easily adopted to the novel
lighting and produce reasonable rendering results.

L. Additional Discussions about Undeformed
(First) Texture Map

Our GeoNet ®¢,, estimates template deformations from
undeformed texture map 715 and non-root normal map
Tx- Similar to the normalized skeletal motion in DDC [2],
T provides the pose information. However, dynamic ge-
ometries of a moving human body are not completely de-
termined by the skeletal pose at that moment, it leads to
one-to-many mapping issue [6]. Our undeformed texture
map 71 offers additional information about the degree
of deformations. As shown in Fig. 7, under the same body
pose, the degree of deformations can be reflected by the dis-
tortions of 7¢ 1st.

M. More Discussions about Limitations

Color Fluctuation. Though simple and efficient, our
method suffers from a certain extent color fluctuation of
some frames as shown in the video. We found that this
could be attributed to the predicted Gaussians are trying to
overfit the uneven lightings of studio and shadows on the
body, which are challenging for such simple representation.
Integrating ray tracing or physically based rendering may



Figure 5. Qualitative results. We perform our method on a loose and long-hair subject, it manages to capture the coarse deformations of
hair and dress and produces faithful rendering results.

Figure 6. Qualitative results. Results with finetuned model under novel lighting. After finetuning, DUT still runs in feed-forward manner.

reduce the color fluctuation.

Topology Change. In Fig. 8, we show results on a sequence
where the subject is taking clothes off. While results look
reasonable, still the quality degrades. Though a fixed tem-
plate contributes a lot, it will be an interesting direction to
investigate how to introduce dynamic template update into
such task, especially with only RGB inputs.
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Symbol Description
D Deformation parameters
M Body motion parameters
v Vertices of human template mesh in the canonical body pose
Nv Number of vertices on human template mesh
TLes(-) LBS transformation function

H
ANeRpuwrznwm ﬂgumw&Eg\

Mesh deformation function
A function that converts spherical harmonics coefficients h into RGB colors s
3D positions in the Euclidean space
3D rotation matrix
3D scale matrix
Jacobian of the affine approximation of the projective transformation
3D view matrix
A set of Gaussian parameters, including p, r, h, s, o
Positions of 3D Gaussians in world space
Rotations of 3D Gaussians
Spherical harmonics of 3D Gaussians
Scales of 3D Gaussians
Density values of 3D Gaussians
Density values of 3D Gaussians in 2D
Color values of 3D Gaussians
Unprojected texture map in texel space
Visibility map in texel space

T angle Visibility map computed by normal difference in texel space
T depth Visibility map computed by depth difference in texel space
T mask Visibility map computed by segmentation mask in texel space
®qeo  |Geometry network that estimates deformations of human body template in texel space
DGau Gaussian network that estimates Gaussian parameters in texel space
Tx Normal map of posed template but without root rotation in texel space
Te1st First unprojected texture map in texel space
Te 2nd Second unprojected texture map in texel space
g A set of modified Gaussian parameters, including d, r, h, s, o
Mg Mask map of valid Gaussians in texel space
R(") Gaussian renderer
TiBs LBS transformations map in texel space
Tro(0,%) Deformed base geometry map in texel space
Tg Modified Gaussian map G in texel space
TG.x Feature map x of 7¢ in texel space, x € {d,h,s,r, a}
T (+) The function that indexes the features in the texel space.
1’ Rendered image with Gaussian scale refinement
Ts Refining scale map in texel space
Lchams Chamfer distance
Liap Laplacian loss
Liso Isometry loss
Lne Normal consistency loss
L1 L1 loss
ESSIM SSIM loss
EIDMRF IDMREF loss
LReg Geometric regularization loss

Table 4. Notations and symbols.



