
SET: Spectral Enhancement for Tiny Object Detection

Supplementary Material

6. API: Perturbation Derivation
The adversarial perturbations discussed in Sec. 3.2 are in-
jected to adversarially change the model output, thereby
enhancing feature saliency in critical regions. This sec-
tion details the derivation of the closed-form solution in
Eqn. 6 following [12]. The optimization process in Eqn. 5
involves solving a min-max problem. First, it maximizes
the perturbed losses with respect to ✏i,cls within the con-
straint k✏i,clsk  ⇢i. This is achieved by finding ✏⇤

i,cls using
a Taylor expansion of the loss functions with respect to Pi

around 0:

Lcls(Pi + ✏i,cls) ⇡ Lcls(Pi +rPiLcls(Pi) · ✏i,cls. (10)

Introducing a dual norm problem, ✏⇤
i,cls is approximated as

follows with 1
p
+ 1

q
= 1:

✏⇤
i,cls ⇡ ⇢ ·sign(rPiLcls(Pi) ·

|rPiLcls(Pi)|q�1

(krPiLcls(Pi)kqq)1/p
. (11)

With the inner maximization problem solved using ✏⇤
i,cls, the

minimization problem is addressed by calculating the gra-
dient while excluding the Hessian term, as shown below:

rPi max
k✏i,clsk⇢

Lcls(Pi+ ✏i,cls) ⇡ rPiLcls(Pi+ ✏⇤
i,cls) (12)

7. API: Facilitating Feature Robustness
In this section, we delve into how the Adversarial Perturba-
tion Injection (API) module fosters robust feature represen-
tations through adversarial training. The optimization ob-
jective in Eqn. 5 can be decomposed into two components:

max
k✏i,clsk⇢i

Lcls(Pi + ✏i,cls)

=


max

k✏i,clsk⇢i

Lcls(Pi + ✏i,cls)� Lcls(Pi)

�
+ Lcls(Pi).

(13)
The first term of Eqn. 13 captures the sharpness of Lcls at
Pi by measuring how quickly the training loss can be in-
creased by moving from Pi to a nearby activation value, as
described in Sharpness-Aware Minimization (SAM) [12].
This term imposes a penalty on sharp regions in the loss
landscape, where predictions are highly sensitive to minor
changes in activations of Pi. The second term is the classi-
fication loss of original samples.

The regularization in Eqn. 13 encourages the model to
prioritize robust attributes, thereby enhancing its ability to
discriminate subtle characteristics of tiny objects despite the
inherent low resolution.

(a) Vanilla FCOS

(b) FCOS w/ API

Average Tiny Object Saliency: 53.99
Average Small Object Saliency: 186.83

Average Tiny Object Saliency: 69.93
Average Small Object Saliency: 275.38

Figure 8. We provide a zoom-in example of the average saliency
visualization. Note that the saliency maps are first computed based
on the `2-norm of the gradient [13] at neck feature P3. The
saliency of each object is then summed and annotated within their
respective bounding box. The average saliency of each object
scale is calculated as the mean saliency across objects in the corre-
sponding size category, displayed in the bottom-left corner of each
image.

8. HBS: Variants of Smoothing Kernels

We supplement our analysis of the smoothing kernels in the
HBS module. In Tab. 5, we compare convolutional smooth-
ing (Eqn. 3) with adaptively calculated and fixed kernels of
sizes 3⇥3, 5⇥5, and 7⇥7. Results reveal that all smooth-
ing strategies surpass the FCOS baseline in model perfor-
mance (AP), demonstrating the effectiveness of background
smoothing. Convolutional smoothing with adaptively cal-
culated kernels achieves a notable AP increase of 1.9%
(round down) and 1.4% (round up). Based on the compar-
isons, HBS is fixed with the convolutional smoothing with
adaptively calculated kernels as delineated in Eqn. 4 for the
experiments within this paper.

Figure 9. We visualize (a) the input image with ground-truths shown in green boxes, (b) P3-P7 feature in the vanilla FCOS after Principal
Component Analysis (PCA) [46], and (c) P3-P7 feature in FCOS enhanced with HBS after PCA. Darker colors in the PCA maps indicate
more critical components in the feature.

Table 6. Main results with various frameworks on TinyPerson. Note that models are trained on the TinyPerson train and validated on
the TinyPerson val. We report APs (%) with different IoU threshold and APs (%) for objects in various sizes following the TinyPerson
benchmark [56]. The bold denotes the best result.

Framework Backbone APtiny

50 Atiny1
50 APtiny2

50 APtiny3
50 APsmall

50 APtiny

25 APtiny

75

FCOS [39] R50 16.9 3.9 12.4 29.3 36.8.8 40.5 1.5
DSFD [39] R50 31.1 14.0 35.1 46.3 51.6 59.6 2.0
Faster R-CNN [39] R50 43.6 48.3 53.5 43.6 56.7 64.1 5.4
RetinaNet [24] R50 15.5 3.0 14.4 29.1 46.8 48.4 1.3
RetinaNet w/ SET R50 17.1+1.6 3.5+0.5 15.7+1.3 29.4+0.3 47.0+0.2 51.4+3.0 1.4+0.1

AutoAssign [64] R50 21.0 7.1 19.7 32.3 48.1 55.0 1.4
AutoAssign w/ SET R50 24.0+3.0 7.3+0.2 22.6+2.9 37.0+4.7 50.0+1.9 58.0+3.0 1.9+0.5

9. PCA Visualization of High-level Features

We present the PCA visualizations of P3-P7 features in
Fig. 9 to further illustrate the effectiveness of HBS. The
vanilla FCOS results for example (a) at the P3 layer high-
light the low discrimination challenge of tiny objects, where
tiny objects (e.g., bridges) appear less distinct after feature
encoding compared to background objects (e.g., houses).
The red boxed areas in P4 layer further demonstrate that
tiny objects are overshadowed by dominant background in-
formation, particularly in high-level features. A compari-
son between vanilla FCOS and FCOS w/ SET reveals that

HBS effectively smooths background regions and signifi-
cantly enhances the contrast between foreground and back-
ground, which is critical for the overshadowed tiny objects.
Moreover, the P4 layer results in both examples clearly
demonstrate the smoothing effect, where HBS reduces the
intensity of patterns in multiple background regions, mak-
ing them more vague.

10. Experiments on TinyPerson

We further conduct experiments on the tiny object detection
dataset Tinyperson [56]. The TinyPerson dataset represents

Table 7. Results with various frameworks using the Swin-T backbone on AI-TOD. Note that models are trained on the AI-TOD trainval
and validated on the AI-TOD test. We report APs (%) with different IoU threshold and APs (%) for objects in various sizes based on the
AI-TOD criterion. The bold denotes the best result.

Framework Backbone AP AP0.5 AP0.75 APvt APt APs APm

FCOS [39] Swin-T 11.9 30.2 7.2 2.7 11.6 16.4 23.7
FCOS w/ SET Swin-T 14.1 37.2 9.4 3.1 13.2 21.4 31.1
ATSS [61] Swin-T 12.7 32.2 7.6 3.5 11.7 17.2 26.1
ATSS w/ SET Swin-T 15.0 36.5 9.8 3.1 13.0 22.2 33.8
AutoAssign [64] Swin-T 10.5 28.1 5.3 4.0 12.1 12.9 15.6
AutoAssign w/ SET Swin-T 16.8 43.3 9.8 5.4 17.4 20.9 26.5

Table 8. Results on SeaPerson [57]. Models are trained on SeaPer-
son trainval and tested on SeaPerson test.

Framework AP50 APtiny

50

Faster R-CNN 73.44 60.78
Faster R-CNN w/ SET 79.65 65.40

persons in extremely low resolutions, mainly less than 20
pixels. Notably, it includes a large number of tiny objects
(smaller than 16 × 16 pixels). It serve as a valuable supple-
ment to existing datasets, particularly in terms of the diver-
sity it brings to the table in relation to poses and views.

Results in Tab. 6 show that our proposed method
achieves 1.6% and 3.0% improvement regarding APtiny

50 re-
spectively, which are substantial gains. Moreover, SET con-
sistently improves performance across various IoU thresh-
olds and object sizes. For example, SET boosts the APtiny3

50

by 4.7% for AutoAssign detector, a significant margin.

11. Experiments on SeaPerson
Moreover, we include results on SeaPerson [57], where SET
achieves 6.21% AP50 improvement, highlighting its effec-
tiveness in dense scenes.

12. Experiments using the Swin backbone
Unlike previous TOD methods [51, 52] that rely on recep-
tive field computations, our method can be easily combined
with other advanced backbone networks. To demonstrate
the generalizability of SET, we conducted additional ex-
periments using various detectors paired with the Swin-T
backbone [27] on AI-TOD. Similar to the results obtained
using the ResNet-50 backbone, the SET method improves
the performance of both anchor-based detectors (ATSS [61]
and RetinaNet [24]) and anchor-free detectors (FCOS [39]
and AutoAssign [64]) by margins ranging from 3% to 6%,
which is significant. As shown in Tab. 7, AutoAssign[64]
with SET achieves an AP of 16.8%, deriving a significant
improvement of 6.3% over the vanilla baseline. In addition,
FCOS [39] trained with our SET shows a 2.2% AP increase.

Table 9. Detection performance on MS COCO [21]. Note
that models are trained on COCO train2017 and validated on
COCO val2017.

Framework AP APvt APt APs APm

FCOS [39] 36.4 7.9 19.6 27.2 43.6
FCOS w/ HBS 36.9 8.0 20.2 27.5 43.9
FCOS w/ API 37.0 8.1 20.3 27.6 44.0
FCOS w/ SET 37.4 8.3 23.3 27.6 44.8

13. Ablation Study on COCO
We further conduct ablation experiments on the general ob-
ject detection benchmark MS COCO [21] to evaluate the
effectiveness of each module. As shown in Tab. 9, SET
achieves a 1.0% AP improvement over the FCOS baseline,
with a significant 1.7% improvement in APt. The HBS
module improves the baseline AP by 0.5%, with a 0.6%
increase in APt and a 0.3% increase in APs, while the API
module achieves a 0.6% improvement in AP, with a 0.7%
increase in APt and a 0.4% improvement in APs. These
results demonstrate the effectiveness of both modules in en-
hancing tiny object detection within general object detec-
tion tasks. Furthermore, while improving overall detection
performance, the greater gains in APt validate our design is
TOD specific.

	Introduction
	Related Work
	Methods
	Hierarchical Background Smoothing
	Adversarial Perturbation Injection
	Auxiliary Optimization

	Experiments
	Datasets and Implementation Details
	Results on AI-TOD
	Results on VisDrone2019 and DOTA-V2.0
	Results on COCO
	Ablation Study
	Enhanced Object Saliency
	Effectiveness in Smoothing

	Conclusion
	API: Perturbation Derivation
	API: Facilitating Feature Robustness
	HBS: Variants of Smoothing Kernels
	PCA Visualization of High-level Features
	Experiments on TinyPerson
	Experiments on SeaPerson
	Experiments using the Swin backbone
	Ablation Study on COCO

