
SVG-IR: Spatially-Varying Gaussian Splatting for Inverse Rendering

Supplementary Material

We propose SVG-IR, a novel inverse rendering frame-
work based on our proposed Spatially-varying Gaussian
representation with spatially-varying material attributes.
Besides we introduce our physically-based illumination to
better decouple material properties and illumination. In this
supplementary material, we provide implementation details
Sec. 8, along with additional results Sec. 9 and ablation
study Sec. 10.

8. Implementation details

Spatially-varying Gaussian representation. As de-
scribed in Sec. 4.1. In our Spatially-varying Gaussian, we
define several Gaussian vertices with different material at-
tributes on a single Gaussian primitive. The Gaussian ver-
tices are parameterized on the tangent space of each Gaus-
sian defined by the rotation matrix R and the scaling matrix
S. In implementation, we create a square on each Gaus-
sian surfel, where the length of each side of the square is
determined by twice the scaling S along the two axes.

Ray tracing. We perform ray tracing on Gaussian surfels
in Sec. 4.3 to obtain the incoming radiance of each Gaus-
sian. When constructing the BVH, we treat each Gaussian
as an elliptical disk, where the lengths of the two axes are
set to three times the scaling factor, and the thickness of
each disk is defined as 1 × 10−12. We perform uniform
sample on the up hemisphere of each Gaussian K (K=64
in our experiments) times to get K sampled directions. For
each Gaussian, we emit rays along the K sampled direc-
tions as well as along the upper hemisphere to perform ray
intersections. When a ray hits a Gaussian, the new ray’s
starting point is the hit point, plus an offset of ϵ (set as 0.05)
times the ray direction, and the ray tracing continues from
there. The radiance and transmittance are accumulated as
Eqn. (12) and Eqn. (3). The ray tracing results are stored in
the micro-buffers of each Gaussian for later direct queries,
eliminating the need to re-trace the rays. Besides, during
ray tracing, we also record the index I of the first Gaussian
hit and its coordinates in the tangent space U , which are
stored in the Gaussian’s buffer as well.

One-bounce indirect illumination. We replace the in-
direct illumination from the radiance colors of Gaussians
with one-bounce indirect illumination in Sec. 4.4. Thanks
to the micro-buffers stored in ray-tracing, we can utilize
the index buffers I to query the bounce between Gaussians
quickly with the tangent space coordinates U to determine

the weights of interpolation. Then we can compute the one-
bounce indirect illumination in Eqn. (13) with a fast speed.

Radiance consistency loss. We leverage one-bounce in-
direct illumination as a supervision when training by sam-
pling the specular direction as
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where ωk
o represents the view direction on Gaussian j. We

only sample on directions that are not visible to direct light,
ensuring the presence of indirect lighting from bounces be-
tween Gaussians. Thus, We can compute the radiance con-
sistency loss as Eqn. (14). As described in Sec. 8, the index
micro buffers also reduce the computation time this loss less
than 1 ms.

Loss details. We train Gaussian vertex attributes using
loss terms in Eqn. (15). The L1 and Lssim reprensent L1 loss
and SSIM loss between rendered image and ground truth,
which are commonly used rendering loss by previous meth-
ods [9, 19, 22]. Lec is the radiance consistency loss defined
in Eqn. (14). Ls,a is TV-loss on albedo for smoothness, de-
fined as
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where α̂ is the albedo map obtained by the SVG splatting in
Sec. 4.2. Ls,r is the TV-loss on roughness similar to Ls,a.
Ln is the normal consistency loss in Gaussian surfels [6] by

Ln = (1− n̂⊤n̂D̂) (18)

where n̂ is normal map and n̂D̂ is the pseudo normal map
from the depth map. Lreg,n is L2 regular term of normal
offsets from Gaussian Shader [13] as

Lreg,n = ||∆N{M}||2 (19)

The loss weights {λ1, λssim, λrc, λn, λs,a, λs,r, λreg,n} are
set as {0.9, 0.1, 0.05, 0.02, 0.1, 0.05, 0.01}.

9. More results
Results on TensoIR Synthetic dataset. We show more
inverse rendering results on Figs. 12 to 15. The metrics
on albedo and normal are shown in Tab. 5. Relightable



Table 5. Comparison of albedo and normal on TensoIR Synthetic
and ADT datasets. Numbers in red represent the best performance,
while orange numbers denote the second best.
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Method
Albedo Normal

PSNR↑ / SSIM↑ / LPIPS↓ MAE↓
MII 27.293 / 0.933 / 0.101 5.076
TensoIR 29.275 / 0.950 / 0.087 4.098
Gsshader 25.026 / 0.923 / 0.087 5.757
GS-IR 30.286 / 0.941 / 0.084 5.341
RelightGS 28.537 / 0.922 / 0.087 5.064
Ours 30.341 / 0.951 / 0.074 4.358

A
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MII 29.150 / 0.952 / 0.068 3.027
TensoIR 29.295 / 0.954 / 0.056 2.688
Gsshader 30.432 / 0.960 / 0.036 1.995
GS-IR 32.711 / 0.968 / 0.037 2.665
RelightGS 21.047 / 0.911 / 0.039 2.179
Ours 33.630 / 0.980 / 0.023 1.703

3DGS [9] conducts over-smooth normal and albedo. Gaus-
sianShader [13] produces unnatural relighting results. Due
to the residual color terms and the approximation of PBR.
GS-IR [22] produces coarse normals and albedo with
baked-in lighting effects. TensoIR [16] lacks the details
in rendering, e.g. the texture on the bread in the hotdog
scene. Our method leverages Spatially-varying Gaussians
and physically-based illumination to enhance representa-
tional capacity and lighting decoupling, achieving high-
quality results on both relighting and NVS. We also provide
detailed per-scene results in Tab. 12.

Results on ADT dataset. We show more inverse render-
ing results on Figs. 16 to 19. The metrics on albedo and nor-
mal are shown in Tab. 5. We achieve excellent inverse ren-
dering and relighting results thanks to our SVG-IR frame-
work in ADT dataset. We also provide detailed per-scene
results in Tab. 13.

Results on DTU dataset. In Fig. 20, we demonstrate the
inverse rendering results of our method on the real-world
DTU dataset [12]. Utilizing our SVG-IR framework, we
recover the material properties and achieve high-quality re-
lighting. Besides, our approach produces natural indirect
lighting, thanks to our physically-based illumination model.

Results on NeILF++ dataset. To verify its robustness
in relighting, we further evaluate our method on the real-
world dataset NeILF++ [33], scomparing it against GS-
IR [21] and Relightable 3DGS [9], as shown in Fig. 21. The
results demonstrate the robustness of our SVG-IR frame-
work, achieving high-quality relighting even on the rela-
tively sparse-view real-world dataset.

Table 6. Comparison of NVS quality between our method and
others on NeRF Synthetic dataset. Red numbers represent the best
performance, and orange denotes the second best.

Method Relightable PSNR↑ SSIM↑ LPIPS↓

NeRF [24] ✗ 31.012 0.947 0.056
Plenoxels [7] ✗ 31.714 0.958 0.053
TensoRF [4] ✗ 33.140 0.963 0.042
3DGS [19] ✗ 33.883 0.971 0.031
GaussianSurfels [6] ✗ 33.053 0.961 0.036

TensoIR [16] ✓ 29.537 0.943 0.067
GaussianShader [13] ✓ 33.367 0.960 0.042
RelightGS [9] ✓ 28.238 0.938 0.056
GS-IR [22] ✓ 30.133 0.937 0.059
Ours ✓ 30.338 0.946 0.051

Results on Mip-NeRF360 dataset. Fig. 22 showcases
the inverse rendering and relighting results of our
method on MipNeRF360 datasets [1]. Our SVG-IR
framework achieves high-quality reconstruction with the
Spatially-varying Gaussian and physically-based illumina-
tion, demonstrating robust performance on scene-level real-
world datasets.

Results on NeRF Synthetic dataset. We evaluate the
NVS performance of our method on the NeRF Synthetic
dataset [24] and compare it with both relightable and non-
relightable approaches in Tab. 6. Among relightable meth-
ods, our approach achieves near SOTA NVS quality. Gaus-
sianShader builds upon the radiance SH representation in
3DGS by incorporating BRDF, rather than replacing radi-
ance SH with BRDF as other methods do. This enables it to
achieve the NVS quality comparable to the original 3DGS
at the expense of relighting performance. In contrast, our
Spatially-varying Gaussian representation and physically-
based illumination enable competitive NVS quality while
preserving relighting fidelity.

Results of normal and albedo in ablation study. The
impact of Spatially-varying Gaussian (SVG), visibility
(Vis.), and indirect ill. (Ind.) on the normal and albedo
quality is in Tab. 7.
Table 7. Nor./albedo quality in ablation study (TensoIR dataset).

Component Albedo Normal

SVG Vis. Ind. PSNR↑ SSIM↑ LPIPS↓ MAE ↓

✗ ✗ ✗ 26.84 0.926 0.099 4.77
✓ ✗ ✗ 27.94 0.931 0.080 4.53
✓ ✓ ✗ 29.26 0.945 0.073 4.39
✓ ✓ ✓ 30.34 0.951 0.074 4.36

Results of R3DG combined with 2D Gaussian. We
combine R3DG with 2DGS, similar to our method, and
compare it to R3DG, and ours in Tab. 8. While R3DG(2D)
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Figure 11. Ablation of indirect illumination components and radi-
ance consistency loss. “Vis.” means the visibility, “Ind.” means the
indirect illumination and “Rad.” means the radiance consistency
loss. The right part of albedo maps are processed with higher con-
trast for better observation. The GT roughness is from the “hot-
dog” blender scene in NeRF Synthetic dataset [24] rather than the
TensoIR dataset. [16]

shows an improvement in relighting quality compared to
R3DG, it is 1.2dB lower than ours due to its limited rep-
resentation capacity and lack of physical constraints for in-
direct illumination.

Table 8. R3DG vs. R3DG(2D) vs. ours (TensoIR dataset).

Method
Gaussian Relight NVS Albedo Normal

Count PSNR↑ PSNR ↑ PSNR ↑ MAE ↓

R3DG ∼ 20k 27.60 33.35 28.54 5.06
R3DG(2D) ∼ 14k 28.96 32.82 29.25 4.72
Ours ∼ 14k 31.10 36.71 30.34 4.36

10. More ablation study

Loss. We perform ablation experiments on the loss func-
tions to analyze their impact. The loss terms outlined
in Sec. 8 are divided into three categories: (1) the normal
loss LN , which includes Ln; (2) the smoothness loss Ls,
comprising Ls,a and Ls,r; and (3) our proposed radiance
consistency loss Lrc. The metrics are shown in Tab. 9. Nor-
mals require constraints to prevent overfitting due to their
inherent ambiguity in appearance representation. Smooth
loss terms on material parameters lead to cleaner render-
ing results than those without such regularization, which
is beneficial for relighting. The radiance consistency loss
leverages the pre-trained radiance field to provide supervi-
sion from additional viewpoints, improving the quality of
both relighting and NVS.

Ray sample counts and cost. We conduct additional ex-
periments on the counts of the sampled directions for per
Gaussian. We evaluate the quality, memory cost and render-
ing time on “armadillo” from TensoIR Synthetic as shown
in Tab 10. Under the observation that the quality reaches
a plateau at K = 64, while maintaining real-time render-
ing speed and acceptable memory usage, we finally select
K = 64 for the balance of the quality and the cost.

Table 9. Ablation study of the loss terms. Numbers in red repre-
sent the best performance, while orange numbers denote the sec-
ond best.

Component Relighting NVS

LN Ls Lrc PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

✗ ✓ ✓ 30.002 0.939 0.062 36.379 0.972 0.034
✓ ✗ ✓ 30.753 0.941 0.054 36.722 0.975 0.035
✓ ✓ ✗ 30.662 0.943 0.061 36.444 0.974 0.035
✓ ✓ ✓ 31.087 0.946 0.055 36.709 0.975 0.033

Table 10. Ablation on the sample counts. We present the relight-
ing quality and corresponding cost at different sample counts K.
Numbers in red represent the best performance, while orange num-
bers denote the second best. In practice, we set K = 64.

Sample count
Relighting Cost

PSNR↑ SSIM↑ LPIPS↓ Memory↓ Rendering Time↓

K = 16 34.114 0.9587 0.05627 11.1GB 10ms
K = 32 34.842 0..96112 0.05542 12.1GB 11ms
K = 64 35.010 0..96289 0.05401 14.3GB 13ms
K = 128 35.009 0.96311 0.05392 20.4GB 21ms

Indirect illumination. Fig. 11 presents the ablation re-
sults for albedo and roughness maps. By modeling visibil-
ity, we alleviate the issue of shadows being baked into the
albedo in baseline methods. Indirect illumination model-
ing further helps decoupling of material and lighting, pre-
venting discrepancies in albedo caused by differing light-
ing conditions from the left to right. Moreover, indirect il-
lumination serves as the foundation of our proposed radi-
ance consistency loss Lrad, which ensures roughness aligns
more closely with the ground truth. This improvement is
achieved through the additional viewpoint guidance pro-
vided by Lrad.

Gaussian vertex count. As shown in Tab. 11, more Gaus-
sian vertices result in higher quality with more storage. We
choose M=4 in our experiments as a trade-off.

Table 11. Ablation study on GV count (TensoIR dataset). Red dot
means a GV. Lagrange interpolation is used.

Vertex Relight NVS Albedo Normal
Count Distrib. PSNR↑ PSNR ↑ PSNR ↑ MAE ↓

M = 2 30.01 36.37 28.02 4.90
M = 4 31.10 36.71 30.34 4.36
M = 6 31.17 36.77 30.74 4.33



Table 12. Per-scene results of normal, albedo and NVS on TensoIR Synthetic dataset. For albedo results, we follow NeRFactor [37] by
scaling each RGB channel by a global scalar.

Scene Method
Normal Albedo Novel View Synthesis
MAE↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Armadillo

InvRender 1.732 35.573 0.959 0.076 36.681 0.971 0.056
TensoIR 1.960 34.360 0.989 0.059 39.070 0.986 0.039

GSshader 2.107 31.092 0.938 0.053 42.445 0.989 0.024
GS-IR 3.105 38.572 0.986 0.051 38.530 0.972 0.041

RelightGS 2.224 34.435 0.933 0.067 39.440 0.980 0.042
Ours 1.974 36.851 0.973 0.047 41.057 0.983 0.031

Ficus

InvRender 4.884 25.335 0.942 0.072 25.498 0.939 0.062
TensoIR 4.400 27.130 0.964 0.044 29.770 0.973 0.041

GSshader 4.513 28.239 0.966 0.028 35.256 0.990 0.012
GS-IR 5.104 30.867 0.948 0.053 33.258 0.960 0.039

RelightGS 4.991 28.597 0.912 0.057 32.405 0.974 0.028
Ours 3.408 31.580 0.972 0.032 34.899 0.978 0.025

Hotdog

InvRender 3.708 27.028 0.950 0.094 32.219 0.952 0.070
TensoIR 4.050 30.370 0.947 0.099 36.780 0.976 0.046

GSshader 8.315 18.149 0.909 0.127 36.897 0.980 0.029
GS-IR 4.774 26.745 0.941 0.088 34.843 0.969 0.051

RelightGS 5.399 25.277 0.939 0.087 30.371 0.943 0.045
Ours 4.016 27.252 0.952 0.078 36.329 0.977 0.034

Lego

InvRender 9.980 21.435 0.882 0.160 28.277 0.887 0.133
TensoIR 5.980 25.240 0.900 0.145 35.040 0.970 0.033

GSshader 8.094 22.625 0.877 0.140 35.403 0.976 0.024
GS-IR 8.380 24.958 0.889 0.143 33.455 0.954 0.042

RelightGS 7.643 25.838 0.902 0.135 30.371 0.943 0.045
Ours 8.032 25.681 0.901 0.139 34.551 0.964 0.041
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Figure 12. Qualitative comparison of NVS, normal, albedo and relighting on armadillo of TensoIR Synthetic dataset.



Table 13. Per-scene results of normal, albedo and NVS on ADT dataset. For albedo results, we follow NeRFactor [37] by scaling each
RGB channel by a global scalar.

Scene Method
Normal Albedo Novel View Synthesis
MAE ↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Airplane

InvRender 1.688 30.240 0.978 0.037 32.794 0.985 0.022
TensoIR 1.320 32.400 0.983 0.022 40.370 0.995 0.011

GSshader 1.207 33.233 0.974 0.024 44.640 0.997 0.004
GS-IR 1.584 35.449 0.978 0.035 38.755 0.985 0.020

RelightGS 1.298 35.375 0.973 0.034 37.982 0.991 0.01
Ours 0.876 36.172 0.987 0.017 42.568 0.994 0.007

Birdhouse

InvRender 3.912 27.770 0.948 0.107 31.237 0.943 0.076
TensoIR 2.960 29.350 0.961 0.084 39.350 0.986 0.031

GSshader 3.148 25.984 0.929 0.061 42.167 0.990 0.016
GS-IR 4.811 28.466 0.944 0.057 37.057 0.977 0.033

RelightGS 3.083 25.245 0.939 0.055 36.935 0.982 0.027
Ours 2.911 29.674 0.963 0.04 40.395 0.987 0.019

Gargoyle

InvRender 2.982 29.064 0.924 0.066 29.874 0.945 0.054
TensoIR 3.310 28.430 0.923 0.067 39.050 0.993 0.010

GSshader 1.616 30.846 0.972 0.024 42.497 0.996 0.004
GS-IR 1.711 31.955 0.973 0.022 35.904 0.984 0.013

RelightGS 2.253 31.424 0.931 0.025 38.910 0.989 0.007
Ours 1.581 35.09 0.989 0.012 42.079 0.995 0.005

Calculator

InvRender 3.526 29.526 0.956 0.061 29.854 0.954 0.050
TensoIR 3.160 27.000 0.949 0.051 40.100 0.993 0.016

GSshader 2.007 31.665 0.965 0.036 43.857 0.996 0.005
GS-IR 2.553 34.973 0.976 0.032 37.470 0.983 0.022

RelightGS 2.081 27.216 0.948 0.042 33.915 0.986 0.013
Ours 1.445 33.582 0.980 0.021 40.881 0.993 0.009
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Figure 13. Qualitative comparison of NVS, normal, albedo and relighting on ficus of TensoIR Synthetic dataset.
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Figure 14. Qualitative comparison of NVS, normal, albedo and relighting on hotdog of TensoIR Synthetic datasets.

NVS

Normal

Albedo

Relighting

Relighting

GTRelightable 3DGSTensoIR GS-IR OursMII GaussianShader

Figure 15. Qualitative comparison of NVS, normal, albedo and relighting on lego of TensoIR Synthetic dataset.
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Figure 16. Qualitative comparison of NVS, normal, albedo and relighting on airsplane of ADT dataset.

NVS

Normal

Albedo

Relighting

Relighting

GTRelightable 3DGSTensoIR GS-IR OursMII GaussianShader

Figure 17. Qualitative comparison of NVS, normal, albedo and relighting on birdhouse of ADT dataset.
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Figure 18. Qualitative comparison of NVS, normal, albedo and relighting on calculator of ADT dataset.
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Figure 19. Qualitative comparison of NVS, normal, albedo and relighting on Gargoyle of ADT dataset.
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Figure 20. Inverse rendering and relighting results on DTU dataset.
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Figure 21. Relighting Qualitative comparison on NeILF++ dataset.
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Figure 22. Inverse rendering and relighting results on MipNeRF360 dataset.
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