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Supplementary Material

We provide more details of our method and implementa-
tion in Secs. A to C. Some content overlaps with the main
paper in the interest of being self-contained. More results
and discussion are found in Secs. D and E.

A. More Details of Our Representation

A.1. Details of Sparse Voxels Grid

Recall that our SVRaster allocates voxels following an Oc-
tree layout but does not replicate a traditional Octree data
structure with parent-child pointers or linear Octree. We
only keep voxels at the Octree leaf nodes without any an-
cestor nodes and store individual voxels in arbitrary order
without the need to maintain a more complex data structure.

The maximum level of detail is set to L=16 that defines
the finest grid resolution at 655363. Note that this is only
for our CUDA-level implementation convenience. We leave
it as future work to extend to an arbitrary number of levels
as we find that 16 levels are adequate for the scenes we ex-
perimented with in this work.

Let ws ∈ R be the Octree size and wc ∈ R3 be
the Octree center in the world space. The voxel index
v={i, j, k} ∈ [0, . . . , 2L−1]3 together with an Octree level
l ∈ [1, L] (l = 0 represent root node and is not used) define
voxel size vs and voxel center vc as:

vs = ws · 2−l , vc = wc − 0.5 ·ws + vs · v . (1)

Internally, we map the grid index to its Morton code by
a well-known bit interleaving operation, which is helpful
to implement our rasterizer detailed later. A Python pseu-
docode is provided in Listing 1.

A.2. Details of Voxel Alpha from Density

A voxel density field is parameterized by eight parameters
attached to its corners vgeo ∈ R2×2×2, which is denoted as
V for brevity in the later equations. We use the exponential-
linear activation function to map the raw density to non-
negative volume density. We visualize exponential-linear
and Softplus in Fig. 1. Exponential-linear is similar to Soft-
plus but more efficient to compute on a GPU. For a sharp
density field inside a voxel, we apply the non-linear activa-
tion after trilinear interpolation [7, 19].

We evenly sample K points in the ray segment of ray-
voxel intersection to derive the voxel alpha value contribut-
ing to the pixel ray. First, we compute the ray voxel inter-
section point by Listing 2, which yields the ray distances a
and b for the entrance and exit points along the ray with ray
origin ro ∈ R3 and ray direction rd ∈ R3. The coordinate

MAX_NUM_LEVELS = 16

def to_octpath(i, j, k, lv):
# Input
# (i,j,k): voxel index.
# lv: Octree level.
# Output
# octpath: Morton code
octpath: int = 0
for n in range(lv):

bits = 4*(i&1) + 2*(j&1) + (k&1)
octpath |= bits << (3*n)
i = i >> 1
j = j >> 1
k = k >> 1

octpath = octpath << (3*(MAX_NUM_LEVELS-lv))
return octpath

def to_voxel_index(octpath, lv):
# Input
# octpath: Morton code
# lv: Octree level.
# Output
# (i,j,k): voxel index.
i: int = 0
j: int = 0
k: int = 0
octpath = octpath >> (3*(MAX_NUM_LEVELS-lv))
for n in range(lv):

i |= ((octpath&0b100)>>2) << n
j |= ((octpath&0b010)>>1) << n
k |= ((octpath&0b001)) << n
octpath = octpath >> 3

return (i, j, k)

Listing 1. Pseudocode for conversion between voxel index and
Morton code. See Sec. A.1 for details.

def ray_aabb(vox_c, vox_s, ro, rd):
# Input
# vox_c: Voxel center position.
# vox_s: Voxel size.
# ro: Ray origin.
# rd: Ray direction.
# Output
# a: Ray enter at (ro + a * rd).
# b: Ray exit at (ro + b * rd).
# valid: If ray hit the voxel.
c0 = (vox_c - 0.5 * vox_s - ro) / rd
c1 = (vox_c + 0.5 * vox_s - ro) / rd
a = torch.minimum(c0, c1).max()
b = torch.maximum(c0, c1).min()
valid = (a <= b) & (a > 0)
return a, b, valid

Listing 2. Pseudocode for intersecting ray and a axis-aligned
voxel. See Sec. A.2 for details.



of k-th of the K sample points is:

tk = a+
k − 0.5

K
· (b− a) (2a)

pk = ro + tk · rd (2b)

qk = (pk − (vc − 0.5 · vs)) ·
1

vs
, (2c)

where pk∈R3 is in the world coordinate and qk∈R3
∈[0,1] is

in the local voxel coordinate. The local coordinate q is used
to sample voxel by trilinear interpolation:

interp(V,q) =
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, (3)

where the subscript in this equation indicates the x, y, z
components of the vector q and the sample index is omitted.
Following NeRF [12, 14], we use quadrature to compute the
integrated volume density for alpha value:

α = 1− exp

(
− l

K

K∑
k=1

explin (vk)

)
(4a)

vk = interp (V,qk) (4b)
l = (b− a) · ∥rd∥ , (4c)

where l is the ray segment length. The gradient with respect
to the voxel density parameters is:

∇V α = (1−α)· l
K

·
K∑

k=1

(
d

dvk
explin(vk) · ∇Vvk

)
. (5)

A.3. Details of Voxel Normal

Recall that we approximate the normal field as constant in-
side a voxel for efficiency, which is represented by the ana-
lytical gradient of the density field at the voxel center q(c).
Thanks to the neural-free representation, we derive closed-
form equations for forward and backward passes instead of
relying on double backpropagation of autodiff. The unnor-
malized voxel normal in the forward pass is:

∇qinterp(V,q(c)) = 0.25 ·(V100+V101+V110+V111)−(V000+V001+V010+V011)

(V010+V011+V110+V111)−(V000+V001+V100+V101)

(V001+V011+V101+V111)−(V000+V010+V100+V110)

 (6)
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Figure 1. Activation functions. We use exponential-linear acti-
vation to softly map raw density to non-negative volume density.
Exp-lin activation is about two times faster to compute in CUDA,
which is 21.5M operations per second in a CUDA thread compar-
ing to 11.8M of Softplus. See Sec. A.2 for more details.

For the backward pass, the gradient with respect to a density
parameter is:

∇Vijk
∇qinterp(V,q(c)) = 0.25 ·

2i− 1
2j − 1
2k − 1

 . (7)

A.4. Details of Voxel Depth

Voxel depths are efficient to compute compared to view-
dependent colors and normals so we do the same K points
sampling as in the voxel alpha value. Unlike colors and
normals, which are approximated by constant inside each
voxel, the depth values of each sample point inside a voxel
are different so we need to incorporate the point depth in
Eq. (2a) into the local alpha composition in Eq. (4). Let

αk = 1− exp

(
− l

K
· explin (interp(V,qk))

)
(8)

be the alpha value of the k-th sampled point. The voxel
local depth is:

d =

K∑
k=1

k−1∏
j=1

(1− αj)

 · αk · tk . (9)

Finally, the pixel depth is composited by D=
∑N

i=1 Tidi from
the N voxels, where Ti is the ray transmittance when reach-
ing the i-th voxel described in the main paper.

We only experiment with K ≤ 3 in this work, where
the forward and backward equation of each case is sum-
marized as follows. The K=1 is trivial with d=α1t1 and
dd
dα1

=t1. In case K=2, the backward equations with voxel



depth d=α1t1 + (1− α1)α2t2 are:
dd

dα1
= t1 − α2t2,

dd

dα2
= t2 − α1t2 . (10)

The voxel depth when K=3 is:

d = α1t1 + (1− α1)α2t2 + (1− α1)(1− α2)α3t3 . (11)

The backward equations are:
dd

dα1
= t1 + α2α3t3 − α2t2 − α3t3 (12a)

dd

dα2
= t2 + α1α3t3 − α1t2 − α3t3 (12b)

dd

dα3
= t3 + α1α2t3 − α1t3 − α2t3 . (12c)

B. More Details of Voxel Rendering Order
Our sorting-based rasterizer is based on the efficient CUDA
implementation done by 3DGS [8]. In the following, we
first describe how the overall sorting pipeline works in
Sec. B.1. We then dive more into the implementation of
the direction-dependent Morton order in Sec. B.2 and its
correctness proof in Sec. B.3.

A supplementary video is provided to show the effect of
correct ordering and a few popping artifacts in comparison
with 3DGS [8].

B.1. Overview
The goal in the sorting stage of the rasterizer is to arrange a
list of voxels in near-to-far order for each image tile. To this
end, 3DGS’s rasterizer duplicates a Gaussian for each im-
age tile the Gaussian covers. A key-value pair is attached to
each Gaussian duplication, where the tile index is assigned
as the most significant bits of the sorting key. The bit field
of the key-value pair is as follows:

key = | tile id︸ ︷︷ ︸
32 bits

|Gaussian z-depth︸ ︷︷ ︸
32 bits

| (13a)

value = |Gaussian id︸ ︷︷ ︸
32 bits

| (13b)

By doing so, all the duplicated Guassians assigned to the
same image tile will be in the consecutive array segment
after sorting with near-to-far z-depth ordering. In the later
rendering stage, each pixel only iterates through the list of
Gaussians of its tile for alpha composition.

In our case, we replace the primitive z-depth with a
direction-dependent Morton order of voxels to ensure the
rendering order is always correct. As there are eight dif-
ferent Morton orders to follow depending on the posi-
tive/negative signs of ray directions, dubbed ray sign bits,
we further duplicate each voxel by the numbers of different
ray sign bits it covers. The ray sign bits are also attached
to each duplicated voxel. In the rendering stage, a pixel
only composites voxels with the same attached ray sign bits

when there are multiple ray sign bits in an image tile. Our
bit field of the key-value pair is:

key = | tile id︸ ︷︷ ︸
16 bits

|Morton order︸ ︷︷ ︸
48 (=3L) bits

| (14a)

value = | ray sign bits︸ ︷︷ ︸
3 bits

| voxel id︸ ︷︷ ︸
29 bits

| (14b)

where L=16 is the maximum number of Octree levels. Note
that the “voxel id” here is indexed to the 1D array loca-
tion where we store the voxel. Not to be confused the
grid (i, j, k) index in Sec. A.1. The bit field arrangement
is mainly for our implementation convenient to squeeze
everything into 64 and 32 bits unsigned integers. In our
current implementation, the maximum number of tiles is
216=65536, which is 4096×4096 maximum image res-
olution with 16×16 tile size; the maximum grid resolu-
tion is (216)3=655363; the maximum number of voxels is
229≈500M . We find this is more than enough for the scenes
in our experiments. Future work can define custom data
types with extra bits for GPU Radix sort [13] to increase
the resolution limit.

B.2. Direction-dependent Morton Order
As described and illustrated in the main paper, there are
eight types of Morton order to follow, each of which is for a
certain type of positive/negative signs pattern of ray direc-
tions. We hard-code the eight types of Morton orders, which
is used to remap every non-overlapping three bits (corre-
sponding to different Octree levels) in the Octree Morton
code of voxels (Sec. A.1):

... bxbybz axayaz 7→ ... f (k)(bxbybz) f
(k)(axayaz) , (15)

where f (k) : [0 · · · 7] 7→ [0 · · · 7] is one of the eight per-
mutation mappings. The pseudocode for computing the
ray sign bits and the mapping function from Octree Mor-
ton code to direction-dependent Morton order is provided
in Listing 3.

B.3. Proof of Correct Ordering
We prove the ordering correctness by induction. We focus
on the case for (+,+,+) ray directions. The proof can be
generalized to the other types of ray direction signs by flip-
ping the scene. The Morton order of the eight voxels in the
first Octree level is illustrated in Fig. 2.

Recap that our sparse voxels only consist of the Octree
leaf nodes without any ancestor nodes. Let V ℓ be the space
of all valid sparse voxel sets with maximum Octree level
equal to ℓ. Let S(ℓ) be the statement that:

“For all sparse voxel sets in V ℓ, their direction-
dependent Morton order is always aligned with
the near-to-far rendering order for all rays with
(+,+,+) direction signs.”



MAX_NUM_LEVELS = 16
order_tables = [

[0, 1, 2, 3, 4, 5, 6, 7],
[1, 0, 3, 2, 5, 4, 7, 6],
[2, 3, 0, 1, 6, 7, 4, 5],
[3, 2, 1, 0, 7, 6, 5, 4],
[4, 5, 6, 7, 0, 1, 2, 3],
[5, 4, 7, 6, 1, 0, 3, 2],
[6, 7, 4, 5, 2, 3, 0, 1],
[7, 6, 5, 4, 3, 2, 1, 0],

]

def to_rd_signbits(rd):
# Input
# rd: Ray direction.
# Output
# signbits: Ray sign bits.
return 4*(rd[0]<0) + 2*(rd[1]<0) + (rd[2]<0)

def to_dir_dep_morton_order(octpath, signbits):
# Input
# octpath: Voxel Octree Morton code.
# signbits: The signbits the voxel care.
# Output
# order: The order for sorting.
table = order_tables[signbits]
order = 0
for i in range(MAX_NUM_LEVELS):

order |= table[octpath & 0b111] << (3*i)
octpath = octpath >> 3

return order

Listing 3. Pseudocode for direction-dependent Morton order. The
mapping between voxel grid (i, j, k) index and Octree Morton
code octpath is detailed in Listing 1. In practice, the mapping
from Octree Morton code to direction-dependent Morton order is
done by a single bitwise xor operation instead of for-loop. More
details in Sec. B.2.

Base case. When ℓ=1, there is only one Octree level. The
direction-dependent Morton order of the eight voxels for
(+,+,+) ray directions is illustrated in Fig. 2. The bit
field from most to least significant bit is for x, y, and z
directions, respectively. As the ray is going toward +x di-
rection, we can always render the voxels in the −x side
(000, 001, 010, 011) first before the voxels in the +x side
(100, 101, 110, 111), which is aligned with the most signifi-
cant bit of the Morton order. Similarly, for the voxels in the
−x side, we can render the voxels in the −y side (000, 001)
before the +y side (010, 011) as the ray is going toward +y.
Finally, we can see that the rendering order is correct if we
iterate the voxels following the assigned Morton order for
ray with (+,+,+) directions.

Induction hypothesis. Assume that S(ℓ) is true for some
positive integer ℓ.

Induction step. We want to show S(ℓ) =⇒ S(ℓ + 1)
is true. For any sparse voxel set w ∈ V ℓ+1, there exists a
sparse voxel set v ∈ V ℓ that can evolve into w by: i) se-
lecting a subset of voxels in v to subdivide with the source

010 110

000 100

011 111

001 101
x

yz

Figure 2. Base case. Direction-dependent Morton order for
(+,+,+) ray direction signs under the base case with 1 Octree
level. The three bits from left to right is for the x, y, and z direc-
tions respectively. The rendering order is correct for all rays going
toward (+,+,+) direction. See Sec. B.3 for more details.

voxels removed and ii) removing some of the voxels. The
S(ℓ) indicates that the direction-dependent Morton order of
v has the correct rendering order. To extend for a new Oc-
tree level, three zero bits are first append to the least sig-
nificant bit of the Morton order of every voxel in v, which
does not affect the ordering. When subdividing a voxel, the
eight child voxels share the same most significant 3ℓ bits
as the source voxel, while the least significant 3 bits follow
the same direction-dependent Morton order as in the base
case Fig. 2. This reflects the fact that the new child vox-
els should keep the same relative order to the other voxels
as their source parent voxels as the child voxels are all in
the 3D space of the source voxels. The rendering order-
ing of the eight child voxels can also follow the same Mor-
ton order as the base case. That is the Morton order is still
rendering-order correct after subdividing some voxels in v.
Finally, removing voxels does not affect the ordering of the
remaining others. In sum, the Morton order of w also has
the correct rendering order so S(ℓ) implies S(ℓ + 1). By
induction, S(ℓ) is true for all positive integer ℓ.

C. Additional Implementation Details
We start the optimization from empty space with raw den-
sity set to hgeo=−10. We use spherical harmonic (SH)
with Nshd=3 degrees. The learning rate is set to 0.025
for the grid point densities, 0.01 for zero-degree SH coeffi-
cients, and 0.00025 for higher-degree SH coefficients. We
decay all learning rates by 0.1 at the 19K iteration. The
momentum and the epsilon value of the Adam optimizer
are set to (0.1, 0.99) and 1e−15. The initial Octree level
is hlv=6 (i.e., 643 voxels) for the bounded scenes and the
foreground main region of the unbounded scenes. To model
unbounded scenes, we use hout=5 background shell lev-
els with hratio=2 times the number of foreground voxels.
We use average frame color as the color coming from infi-



Resolution of main 2563 5123 10243 adaptive

LPIPS↓ 0.444 0.326
OOM

0.200
PSNR↑ 23.98 25.37 28.01
FPS↑ 457 190 171

Table 1. Ablation experiments of adaptive and uniform voxel
sizes. The resolutions at the first row indicate the final grid reso-
lution of the main foreground cuboid. Note that OOM is abbrevi-
ation of the term, ‘out-of-memory’.

nite far away for unbounded scenes. The early ray stopping
threshold is set to hT=1e−4 and the supersampling scale is
set to hss=1.5. Inside each voxel, we sample K=1 point
for novel-view synthesis and K=3 points for the mesh re-
construction task.

We train our model for 20K iterations. The voxels
are subdivided every hevery=1K iterations until 15K iter-
ations, where the voxels with top hpercent=5 percent pri-
ority are subdivided each time. We set hrate=1 and skip
subdividing voxels with a maximum sampling rate below
2hrate. The voxels are pruned every hevery=1K iterations
until 18K iterations, where voxels with maximum blend-
ing weights less than a pruning threshold are removed. The
pruning threshold is linearly increased from 0.0001 at the
first pruning to hprune=0.05 at the last pruning.

The loss weights are set to λssim=0.02, λT=0.01,
λdist=0.1 after 10K iterations, λR=0.01, λtv=1e−10 un-
til 10K iterations. For the mesh reconstruction task, the
weights for normal-depth alignment self-consistency loss
are set to λn-dmean=0.001 and λn-dmed=0.001 for mean
and median depth respectively. The initial depths and nor-
mals are bad so the two normal-depth consistency loss is
activated at the later training iterations. We find the median
depth converges the fastest so we activate median depth-
normal consistency loss at 3K iterations, which also only
regularizes the rendered depth as median depth is not dif-
ferentiable. The mean depth-normal consistency loss is ac-
tivated at 10K iterations.

D. Additional Ablation Studies

D.1. Novel-View Synthesis
We conduct comprehensive ablation experiments of our
method using the indoor bonsai and the outdoor bicycle
scenes from the MipNeRF-360 [1] dataset.

Adaptive voxel sizes. In the main paper, we show that
adaptive voxel size for different levels of detail is crucial
to achieve high-quality results. The results are recapped
in Tab. 1. We provide experiment details here. The start-
ing point of the main foreground region is the same for all
variants with 643 dense voxels. Regarding the background
region, using the same voxel size as the foreground region

is impracticable for uniform-sized variants. Instead, each
of the 5 background shell voxels is uniformly subdivided
by 4 times as initialization for all the variants. The differ-
ence is that the uniform-sized variants subdivide all vox-
els each time until the grid resolution of the main region
reaches 2563, 5123, or 10243 instead of subdividing vox-
els adaptively as described in the main paper. The pruning
setup remains the same for all variants. The result in Tab. 1
shows that adaptive voxel sizes are the key to solve the scal-
ability issue of uniform-sized voxel, which achieves much
better rendering quality with high render FPS.

More ablation studies for the hyperparameters. We
conduct more ablation experiments to show the effective-
ness of the hyperparameters in Tabs. 2 to 12. We mark the
adopted hyperparameter setup by “*” in the table rows. The
setup of the marked rows across different tables can be dif-
ferent as we update the base setups in a rolling manner dur-
ing the hyperparameter tuning stage. In each table, the other
hyperparameter setups except the ablated one are the same.
We discuss the experiments directly in the table captions to
avoid the need for cross-referencing between the tables and
the main text.

D.2. Mesh Reconstruction
To show the effectiveness of the mesh regularization losses,
we use the Ignatius and the Truck scenes from TnT [9]
dataset and three scans with id 24, 69, 122 from DTU [6]
dataset for ablation studies. The results are shown in
Tab. 13. While the normal-depth self-consistency losses
do not improve novel-view synthesis quality in Tab. 12, the
mesh accuracy is improved by an obvious margin with the
regularizations.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
no ss 111 13.5m 0.201 27.69 0.830
hss=1.01 108 13.5m 0.193 28.24 0.845
hss=1.10* 107 13.5m 0.190 28.32 0.848
hss=1.20 99 13.6m 0.188 28.36 0.849
hss=1.30 100 13.7m 0.187 28.39 0.850
hss=1.50 92 13.8m 0.186 28.42 0.851
hss=2.00 75 14.2m 0.185 28.46 0.853

Table 2. Supersampling rate. Our rendering suffers from alias-
ing artifact so we render the image in hss× higher resolution and
apply image downsampling with anti-aliasing filter. The quality
without supersampling is much worse than the others. Resampling
the image with a very small hss = 1.01 can already boost quality
significantly. We find the quality can keep going better with higher
hss but the FPS drops by more than 30% at hss = 2. More future
development is needed for a more efficient anti-aliasing rendering
of our method. We use hss = 1.1 for speed-quality trade-off.



Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
Nshd=1 118 11.2m 0.201 27.43 0.840
Nshd=2 114 12.1m 0.193 27.94 0.847
Nshd=3* 107 13.5m 0.190 28.32 0.848

Table 3. Degree of Spherical Harmonic (SH). The rendering
time with higher SH degree is similar but the quality is much bet-
ter. We use Nshd=3 as our final setup. However, about 80% of
the parameters and the disk space is occupied by the SH coefficient
with Nshd=3. Future work may want to design a more parameters
efficient representation for view-dependent colors.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
K=1* 107 13.5m 0.190 28.32 0.848
K=2 102 13.8m 0.189 28.32 0.849
K=3 99 13.9m 0.189 28.33 0.849

K=1 K=3

iter=800 iter=800

iter=9800 iter=9800

Table 4. Number of sample points in a voxel when rendering.
The effect of sampling more point inside a voxel is marginal as
the voxels are typically subdivided into fine level with small size.
It mainly affects the depth rendering for larger voxels. The figure
shows the normal derived from the rendered depth. K=1 at the
early training stage produce noisy depth as highlighted by the red
arrow, while the depth noisy is mitigated when the voxels is subdi-
vided into finer level. We suggest to use K>1 only when the sub
voxel depth accuracy is required.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
hprune=0.01 96 16.7m 0.191 28.41 0.847
hprune=0.03 107 13.5m 0.190 28.32 0.848
hprune=0.05* 119 11.6m 0.192 28.20 0.846
hprune=0.10 158 9.1m 0.199 27.95 0.840
hprune=0.15 188 7.7m 0.212 27.72 0.831
hprune=0.20 213 6.8m 0.224 27.53 0.823
hprune=0.30 241 5.9m 0.248 27.22 0.806

Table 5. Pruning threshold. We prune voxels with maximum
blending weights below hprune. Higher FPS and faster process-
ing time can be achieved by pruning more voxels but with loss in
quality. We finally use hprune=0.05 to balance speed and quality.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
0.33 159 9.9m 0.210 27.98 0.833
0.50 130 11.2m 0.197 28.16 0.843
1.00* 107 13.5m 0.190 28.32 0.848
2.00 101 15.0m 0.190 28.36 0.848
3.00 101 15.7m 0.190 28.36 0.848

Table 6. Subdivision scale. We subdivide hpercent=5 percent
of the voxels with the highest priority 15 times during the train-
ing. As the number of voxels become (1 + 0.07hpercent) at
each subdivision, the subdivision scales in above table shows their
(1+0.07hpercent)

15

1.3515
, which indicate the expected relative number of

voxels comparing to the base setup. The merit of subdividing more
voxels each time is marginal comparing to the base setup.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
hratio=1.0 120 11.6m 0.195 28.17 0.844
hratio=2.0* 107 13.5m 0.190 28.32 0.848
hratio=3.0 103 14.7m 0.189 28.35 0.849
hratio=4.0 103 15.5m 0.189 28.38 0.849

Table 7. Initial ratio of the number of voxels in background
and main regions. At the initialization stage, we heuristically
subdivide voxel in the background region until the ratio of the
number of voxel is hratio to the foreground region. The overall
result quality are similar for different hratio. It affects training
time more than testing FPS as the training iterations per second
before any pruning is depend on the initial number of voxels.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
λtv=0 102 14.0m 0.202 27.77 0.832
λtv=1e−11 106 13.6m 0.196 27.97 0.840
λtv=1e−10* 107 13.5m 0.190 28.32 0.848
λtv=1e−9 99 15.5m 0.213 27.85 0.822

iter=8800 iter=9800 iter=10800 iter=11800

Table 8. Total Variation (TV) loss. Similar to previous grid-based
approaches [3, 4, 19], TV loss is also important in our method. We
apply TV loss on density grid only for the first half 10,000 itera-
tions as applying TV for all iterations leads to blurrier rendering.
TV with proper loss weighting leads to better quantitative results
without loss of speed. The effect of TV loss is also visualized in
above figure, where many geometric details emerge after the TV
loss is turned off. The employed TV loss scheduling entails the
coarse-to-fine optimization strategy.



Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
λR=0 111 14.6m 0.200 28.11 0.843
λR=1e−4 110 14.6m 0.199 28.11 0.843
λR=1e−3 107 14.5m 0.196 28.20 0.845
λR=1e−2* 107 13.5m 0.190 28.32 0.848
λR=1e−1 118 10.9m 0.205 27.77 0.830

Table 9. Color concentration loss. We find it helpful to apply
L2 loss directly between observed pixel color and the individual
voxel color of each voxel passing by the ray [19], which slightly
improve training time and result quality.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
λdist=0 105 14.9m 0.199 27.27 0.839
λdist=1e−4 106 15.4m 0.199 27.48 0.839
λdist=1e−3 105 15.1m 0.195 27.97 0.842
λdist=1e−2 107 13.5m 0.190 28.32 0.848
λdist=1e−1 137 9.9m 0.256 26.34 0.760
λdist=1e−4 from 10K 104 15.1m 0.199 27.40 0.839
λdist=1e−3 from 10K 105 15.0m 0.197 27.76 0.842
λdist=1e−2 from 10K 105 14.6m 0.193 28.08 0.845
λdist=1e−1 from 10K* 113 13.7m 0.188 28.11 0.848

0.01 0.10  from 10K

Table 10. Distortion loss. Distortion loss is proposed by
MipNeRF-360 [1] and employed by many NeRF-based rendering
approaches to encourage concentration of the blending weight dis-
tribution on a ray. We find distortion loss is also helpful in our
method, especially for the PSNR. We also find that employing a
larger distortion loss weight after the total variation loss is turned
off lead to a cleaner geometry as shown in the above depth-derived
normal visualization.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
λT=1e−0 109 13.4m 0.192 28.23 0.847
λT=1e−3 109 13.5m 0.191 28.25 0.847
λT=1e−2* 107 13.5m 0.190 28.32 0.848
λT=1e−1 109 12.8m 0.192 28.13 0.845

Table 11. Transmittance concentration loss. The effect of
encouraging final ray transmittance to be either zero or one is
marginal in the unbounded scenes. We find this loss is more im-
portant for the object-centric scenes with foreground region only
and known background colors (e.g., Synthetic-NeRF dataset [14]).

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
neither* 107 13.5m 0.190 28.32 0.848
n-dmed 114 13.5m 0.191 28.10 0.849
n-dmean 97 14.0m 0.190 28.14 0.850
both 103 14.4m 0.191 27.99 0.849

neither both

Table 12. Mesh regularization losses for novel-view synthesis.
We also try the normal-depth self-consistency losses for novel-
view synthesis task. Despite of loss a little in PSNR, the regular-
ization can make the rendered normals much smoother as shown
in the visualization.

TnT dataset DTU dataset

Ln-dmed Ln-dmean K F-score↑ Tr. time↓ Cf.↓ Tr. time↓
3 0.56 10.1m 0.94 5.5m

✓ 3 0.59 10.1m 0.68 5.5m
✓ 3 0.61 10.6m 0.68 5.7m

✓ ✓ 1 0.61 10.7m 0.66 5.8m
✓ ✓ 2 0.61 10.8m 0.65 5.9m
✓ ✓ 3 0.62 10.9m 0.65 6.0m

Table 13. Mesh regularization losses. We show the results of the
mesh regularization losses and the number of sample points when
rendering a voxel on a subset of Tanks&Temples [9] and DTU [6]
datasets.



3DGS variants Ours

Method 3DGS [8]† StopThePop [17]† 3DGRT [15] EVER [10] fast-rend base
No popping △ △ ✓ ✓ ✓

FPS↑ 131 94 43‡ 20‡ 258 121
LPIPS↓ 0.257 0.251 0.248 0.233 0.249 0.219
PSNR↑ 27.45 27.35 27.20 27.51 26.87 27.33
SSIM↑ 0.815 0.816 0.818 0.825 0.804 0.822
† Re-evaluated on our machine using the public code.
‡ We scale the FPS to align their reported 3DGS FPS to our reproduced 3DGS.

Table 14. Comparison with 3DGS variants tackling popping
artifact on Mip-NeRF360 dataset [1]. The LPIPS values here
are evaluated with the correct intensity scale between [−1, 1] fol-
lowing EVER [10]. 3DGRT and EVER use ray tracing approach
instead of rasterization. EVER solves the Gaussians ordering and
overlapping issues but sacrificing more FPS.

E. More Results
Comparison with popping-resistant 3DGS variants.
More comparisons with recent 3DGS variants are in
Tab. 14. 3DGS [8] has popping artifacts due to the ordering
and overlapping issues. StopThePop [17] uses running sort
and 3DGRT [15] uses ray tracing for accurate ordering but
drops FPS by 28% and 67% respectively. EVER [10] fur-
ther handles the Gaussian overlapping cases but with even
less FPS. Our method ensures correct ordering (??) with
FPS and quality comparable to the original 3DGS.

Results on Scannet++. Scannet++ [21] is a large-scale
dataset covering various types of indoor scenes. To recon-
struct the bounded indoor environments, we heuristically
set the scene center as the camera centroid and the scene ra-
dius as twice the maximum camera distance from the cen-
troid. The voxel grid starts at 643 without a background
region. Additionally, we implement ray density ascending
regularization and a spherical harmonic reset trick, which
we find improves results on the public validation set. The
result on the held-out test-set is shown in Tab. 15. Our
method achieves good results on all metrics. Some indoor
fly-through videos are provided in the released code.

Results breakdown for novel-view synthesis. In Tab. 16,
we show details per-scene comparison with 3DGS [8] us-
ing our base setup. Our method uses much more primitives
(i.e., voxels or Gaussians) compared to 3DGS on all the
scenes. However, our average rendering FPS is still compa-
rable to 3DGS. We find the FPS is scene-dependent, where
we achieve much faster FPS on some of the scenes while
slower on the others. Our method generally uses short train-
ing time. Regarding the quality metrics, our results are typ-
ically −0.2db PSNR and −0.01 SSIM behind 3DGS, while
our LPIPS is better on average.

As discussed in the main paper, not only the scene rep-
resentation itself affects the results, but the optimization
and adaptive procedure are also an important factor. The
strategy of adding more Gaussians progressively is not ap-
plicable to ours. We also have not explored to use of the

Method LPIPS↓ PSNR↑ SSIM↑

Small set (12 scenes)

Plenoxels [22] 0.399 22.177 0.841
TensoRF [3] 0.404 23.524 0.857
INGP [16] 0.363 23.695 0.871
Zip-NeRF [2] 0.320 24.630 0.887
Nerfacto [20] 0.340 23.498 0.868
3DGS [8] 0.312 23.389 0.876
FeatSplat [11] 0.303 24.177 0.880
RPBG [23] 0.271 24.005 0.882
Ours 0.300 24.365 0.886

Full set (50 scenes)

TensoRF [3] 0.406 24.022 0.850
Zip-NeRF [2] 0.325 25.041 0.880
3DGS [8] 0.319 23.893 0.871
Ours 0.313 24.709 0.874

Table 15. Scannet++ [21] indoor dataset. The test-set images
are not released to prevent overfitting. We submit our rendering
results to the scannet++ official website for a 3rd-party evaluation.
The online benchmark is: https://kaldir.vc.in.tum.de/

scannetpp/benchmark/nvs. In average, our training time is
12 minutes per scene; our rendering FPS is 197 at 1752 × 1168
resolutions. Voxel size statistic is: 13.61% <3mm, 19.25% 3-
5mm, 32.43% 5mm-1cm, 23.31% 1-2cm, 6.66% 2-3cm, 4.73%
>3cm. We do not use the sparse points prior from COLMAP [18]
in this submission.

coarse geometry estimated from SfM, while 3DGS uses
SfM sparse points for initialization. As the first attempt
of marrying rasterizer with fully explicit sparse voxels for
scene reconstruction, there is still future potential for im-
provement from different aspects.

Results breakdown for mesh reconstruction. The F-
score and chamfer distance of each scene from the
Tanks&Temples and DTU [6] datasets are provided in
Tab. 18. We only list the two representative NeRF-based
methods and two GS-based methods in the result break-
down comparison. More methods with the average scores
are in the main paper.

Synthetic dataset. The results on the Synthetic-
NeRF [14] dataset is provided in the last section of Tab. 17.
We achieve good quality, high FPS, and fast training on
this dataset. However, our quality is slightly worse than
3DGS [8] with slower FPS. Our development mainly
focuses on real-world datasets. Future work may need
more exploration to continue development on this dataset.

More qualitative results We show qualitative compari-
son with 3DGS [8] on indoor and outdoor scenes in Fig. 3
and Fig. 4, respectively. Our visual quality is on par
with 3DGS. We provide the visualization of the raw recon-
structed meshes in Fig. 5. For quantitative evaluation, we
follow previous works to apply mesh cleaning with the pro-
vided bounding box or masks. Despite the good quantitative

https://kaldir.vc.in.tum.de/scannetpp/benchmark/nvs
https://kaldir.vc.in.tum.de/scannetpp/benchmark/nvs


FPS↑ Tr. time↓ (mins) LPIPS↓ PSNR↑ SSIM↑ # prim.↓
Scene 3DGS ours 3DGS ours 3DGS ours 3DGS ours 3DGS ours 3DGS ours

MipNeRF-360 [1] indoor scenes

bonsai 215 128 18.3 15.3 0.204 0.171 31.89 31.51 0.942 0.944 1.2M 6.6M
counter 160 85 20.7 18.7 0.199 0.176 29.03 28.72 0.909 0.905 1.2M 8.4M
kitchen 128 78 25.0 17.8 0.126 0.112 31.47 31.29 0.927 0.934 1.8M 9.2M
room 153 131 21.1 17.1 0.218 0.185 31.44 31.10 0.919 0.924 1.5M 8.9M

MipNeRF-360 [1] outdoor scenes

bicycle 72 147 31.9 13.5 0.211 0.190 25.18 25.29 0.765 0.773 6.1M 9.2M
garden 81 118 33.1 12.4 0.107 0.106 27.39 27.31 0.867 0.865 5.9M 9.6M
stump 110 129 25.5 13.0 0.216 0.206 26.61 26.38 0.772 0.769 4.9M 9.2M
treehill 123 157 22.4 13.7 0.327 0.262 22.47 22.74 0.632 0.646 3.7M 9.4M
flowers 137 120 22.0 14.4 0.335 0.268 21.57 21.72 0.606 0.637 3.6M 9.4M

DeepBlending [5] indoor scenes

drjohnson 116 297 25.0 8.7 0.244 0.242 29.11 29.22 0.901 0.892 3.3M 6.8M
playroom 163 308 19.7 7.4 0.244 0.211 30.08 30.53 0.907 0.900 2.3M 6.3M

Tanks&Temples [9] outdoor scenes

train 206 127 11.3 11.4 0.206 0.186 22.11 21.26 0.816 0.813 1.1M 8.3M
truck 154 129 16.3 11.0 0.147 0.100 25.40 25.00 0.882 0.888 2.6M 9.0M

Table 16. Real-world datasets for per-scene side-by-side comparison with 3DGS [8]. Our result here is the base setup. We show
average results of our 2x faster rendering and 3x faster training variants in the main paper.

FPS↑ Tr. time↓ (mins) LPIPS↓ PSNR↑ SSIM↑ # prim.↓
Scene 3DGS ours 3DGS ours 3DGS ours 3DGS ours 3DGS ours 3DGS ours

Synthetic-NeRF [14] object scenes

chair 418 197 5.4 4.6 0.012 0.013 35.89 35.91 0.987 0.986 0.3M 3.0M
drums 406 241 5.8 4.1 0.037 0.043 26.16 26.09 0.955 0.947 0.3M 2.3M
ficus 476 360 5.0 3.1 0.012 0.014 34.85 34.37 0.987 0.984 0.3M 1.3M
hotdog 596 218 5.2 4.8 0.020 0.019 37.67 37.42 0.985 0.984 0.1M 2.8M
lego 415 156 5.9 5.8 0.015 0.016 35.77 35.54 0.983 0.981 0.3M 4.3M
materials 575 213 5.3 4.5 0.034 0.037 30.01 30.00 0.960 0.954 0.3M 2.7M
mic 344 328 5.6 3.0 0.006 0.007 35.38 36.00 0.991 0.992 0.3M 1.1M
ship 254 111 7.9 8.6 0.107 0.106 30.92 30.38 0.907 0.886 0.3M 5.7M

Table 17. Synthetic object-centric dataset for per-scene side-by-side comparison with 3DGS [8]. Our overall quality is slightly worse
than 3DGS on this dataset while the synthetic object-centric scenario is off our main focus.

results for meshes, some apparent artifacts can be observed
from the visualization. In particular, our method focuses
more on the geometric details and sometimes over-explains
the texture on a flat surface with complex geometry. Future
work may want to model a signed distance field instead of
our current density field and introduce surface smoothness
regularizers.
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Figure 3. Qualitative novel-view rendering results on-par with 3DGS.
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Figure 4. Qualitative novel-view rendering results on-par with 3DGS.



Figure 5. Qualitative results of the reconstructed mesh.
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