SplatFlow: Self-Supervised Dynamic Gaussian Splatting in Neural Motion Flow
Field for Autonomous Driving

Supplementary Material

In this supplementary material, we provide more imple-
mentation details of SplatFlow in Appendix 1. We provide
more visualization of 3D LiDAR points within NMFF in
Appendix 2. We present more detailed comparison visual-
izations of dynamic object synthesis from novel views in
Appendix 3. We provide more visualizations of dynamic
objects decomposition in Appendix 4. We present visu-
alizations of the novel view synthesis on newly generated
ego-car trajectories in Appendix 5. We include visualiza-
tions of rendered RGB image, optical flow and depth in Ap-
pendix 6. Runtime performance comparisons are provided
in Appendix 7. Video demonstrations are included in Ap-
pendix 8.

1. Implementation Details

Each field in the Neural Motion Flow Field (NMFF) con-
sists of eight ReLU-MLP stacks. All MLPs are followed
by a ReLU activation, except for the final prediction layer,
where the middle hidden dimensions are configured as 128.

For NMFF pre-training, we follow the approach in [5] to
generate pseudo scene flow labels, excluding ground points
from the Waymo and KITTI datasets. The raw 3D LiDAR
points are utilized without cropping to a smaller range. We
use a learning rate of 8e-3 with the Adam optimizer, opti-
mizing each scene for up to 4000 iterations with early stop-
ping. Additionally, point cloud densification is performed
by accumulating point clouds through Euler integration, us-
ing per-pair scene flow estimations.

During the 4D Gaussian with NMFF optimization, we
configure the position learning rate to a range from 1.6e-5
to 1.6e-6, the opacity learning rate to 0.05, the scale learn-
ing rate to 0.005, the feature learning rate to 2.5e-3, and the
rotation learning rate to 0.001. The intervals for densifica-
tion and opacity reset are set to 500 and 3000, respectively.
We set the densify gradient threshold for decomposed static
and dynamic Gaussians as 1.7e-4 and le-4, respectively.
The Spherical Harmonics degree for each Gaussian is set
to 3. For NMFF optimization, we set the learning rate to
le-4. For training losses, we use coefficients \; = 0.1,
A2 = 0.005, Az = 0.05, Ay = 0.001, Aggim, = 0.2 and
Ar =0.8.

2. Visualization of LiDAR Points in NMFF

We provide more visualization of 3D LiDAR points within
NMEFF on the Waymo dataset in Fig. 1. The color wheel
in the center represents the flow magnitude through color

intensity and the flow direction via angle. As illustrated,
NMEFF accurately predicts the 3D motion flow of 3D Li-
DAR points for dynamic objects in driving scenarios.
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Figure 1. Visualization of 3D LiDAR points within NMFF on
Waymo dataset.

Figure 2. Dynamic object decomposition results of SplatFlow on
Waymo. Row1: Rendered scene, Row2: Corresp. Decomposition

Waymo | KITTI
FPS FPS

S-NeRF [8] 0.0014 | 0.0075
StreetSurf [2] 0.097 0.37
NSG [4] 0.032 0.19
Mars [7] 0.030 0.31
SUDS [6] 0.008 0.04
EmerNerf [9] | 0.053 0.28
3DGS [3] 63 125
PVG 1] 50 59
SplatFlow 40 44

Table 1. The comparison running-time analysis on Waymo and
KITTI datasets.
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Figure 3. Novel view synthesis on newly generated ego-car trajectories on Waymo dataset.

3. Visual Comparison of Dynamic Object Syn-
thesis

We present more visual comparison details of dynamic ob-
ject synthesis from novel views, showcasing results on the
Waymo dataset in Fig. 4 and on the KITTI dataset in Fig. 5.
The dynamic objects in these figures are selected from a
distant background car in an extremely zoomed-in view.
As shown, SplatFlow generates sharper images with fewer
blurred artifacts, particularly for high-speed vehicles, com-
pared to the baselines.

4. Visualization of Dynamic Object Decompo-
sition
We provide more dynamic object decomposition visualiza-

tion of SlatFlow in Fig.2. As shown, SplatFlow clearly sep-
arates the dynamic objects from the rendered scenes.

5. Visualization of Novel View Synthesis on
newly Ego-car Trajectory

We provide novel view synthesis in a more challenging ren-
dering scenario on the Waymo dataset, using newly gener-
ated ego-car trajectories. As shown in Fig. 3, the results
are produced from an ego-car trajectory that is shifted 0.5
meters higher, 0.5 meters lower, 0.5 meters to the left, and
0.5 meters to the right of the original trajectory. As demon-
strated, SplatFlow can render high-quality novel images for

these newly generated ego-car trajectories.

6. Rendered Depth and Flow Visualization

We also present visualization of rendered RGB image, op-
tical flow, and depth on the Waymo dataset in Fig. 6 and
7, and on the KITTI dataset in Fig. 8. In these Figures, the
first row displays the rendered RGB images, the second row
shows the rendered optical flow, and the third row presents
the rendered depth, all generated by SplatFlow. As shown,
our SplatFlow renders sharp, clear, and dense optical flow
and depth images in dynamic driving scenarios.

7. Running-time Analysis

We compare the runtime performance of SplatFlow with
various baseline methods on the Waymo and KITTI
datasets, as summarized in Table 1. Utilizing a single
NVIDIA GeForce A6000, SplatFlow achieves real-time
rendering speeds for high-resolution images after quanti-
zation and pruning optimization, delivering approximately
40 FPS at 1920x 1280 resolution on the Waymo dataset
and around 44 FPS at 1242x375 resolution on the KITTI
dataset. Compared to NeRF-based methods such as S-
NeRF [8], StreetSurf [2], NSG [4], SUDS [6], EmerN-
erf [9], SplatFlow significantly surpasses the speed of these
methods, delivering real-time performance. Compared to
GS-based methods such as 3DGS [3] and PVG [1], Splat-
Flow achieves higher accuracy in dynamic object rendering
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while maintaining efficient performance.

8. Video Demos

We include five video demos in the supplementary material
according to size limitation.

Demos 1 and 2 showcase the results of image synthesis
from novel views produced by SplatFlow, alongside base-
line methods and ground truth (G.T.) data, in dynamic driv-
ing scenarios from the Waymo and KITTI datasets respec-
tively. In these videos, the first and second rows display the
surrounding images rendered by the baselines: 3D-GS [3],
PVG [1], or EmerNeRF [9]. The third row presents the sur-
rounding images rendered by our SplatFlow, while the fi-
nal row shows the G.T. surrounding images. To provide a

SplatFlow (ours) G.T.

Figure 4. Detailed comparison of dynamic object synthesis from novel views on Waymo dataset.

clearer comparison in the visualization, video demos 1 and
2 are played at 0.1x speed.

Demos 3 and 4 showcase the rendered images, optical
flow, and depth by our SplatFlow in dynamic driving scenar-
ios from the Waymo and KITTI datasets. In these videos,
the first row shows the G.T RGB images. The second row
displays the rendered RGB images, the third row shows the
rendered optical flow, and the fourth row presents the ren-
dered depth, all generated by our SplatFlow. For a clearer
visualization, video demos 3 and 4 are played at 0.1x speed.

Demo 5 showcases the 3D motion prediction of LIDAR
points within the NMFF. The color wheel in the top right
corner represents the flow magnitude through color inten-
sity and flow direction via the angle. For clearer visualiza-
tion, video Demo 5 is played at 0.1x speed.
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Figure 5. Detailed comparison of dynamic object synthesis from novel views on KITTI dataset.
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Figure 6. Visualization of rendered RGB image, optical flow, and depth by SlpatFlow on Waymo dataset.
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Figure 7. Visualization of rendered RGB image, optical flow, and depth by SplatFlow on Waymo dataset.
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Figure 8. Visualization of rendered RGB image, optical flow, and depth by SlpatFlow on KITTI dataset.
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