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Overview

The supplementary material presents the following sections
to strengthen the main manuscript:

— Sec. A shows more implementation details.
— Sec. B presents a user study on anomaly generation

quality.
— Sec. C presents more anomaly generation results.
— Sec. D presents results on mask controllability.
— Sec. E shows ablations on hyperparameters.
— Sec. F shows more ablations on attention-guided

and prompt-guided optimization.
— Sec. G shows more anomaly detection results.

A. More Implementation Details

Stable Diffusion For our proposed AnomalyAny, we set the
inference steps to 100 and γ = 0.25 with stable-diffusion-
v1-5. For optimization, we set λ = 10 and ∆t to 1.0/T .
As implemented in [6], the maximum value threshold to
stop the iterative optimization at one time step t is set to
0.05, 0.5, 0.8, increasing with the denoising diffusion pro-
cess. All experiments are run on a single NVIDIA A100-
SXM4-80GB GPU.

Anomaly detection framework We adapt the anomaly de-
tection framework proposed in AnomalyGPT [13], which
deploys CLIP [25] to compute the vision-language and
vision-vision similarities and aggregate these similarities
for anomaly detection. The similarity between visual to-
kens and text embeddings for normal/anomalous states can
indicate the abnormal level of visual tokens [18]. Specif-
ically, for a given image, we first extract its patch tokens
Fi

patch ∈ RHi×Wi×Ci and image token Fimage ∈ R1×C

using the CLIP visual encoder, where i indicates the tokens
that are extracted from the i-th stage of the image encoder.
Then, text embeddings Ftext ∈ R2×C representing nor-
mal/abnormal states are extracted via the CLIP text encoder.
Since the extracted patch tokens have not undergone the fi-
nal image-text alignment and cannot be directly compared
with text features, we use a lightweight feature adapter com-
prising only a linear layer to project patch tokens for both
fine-tuning and dimension alignment between visual and
text embeddings, producing F̂i

patch ∈ RHi×Wi×C . The
detection and localization results based on vision-language

similarity can then be obtained as follows:

SV L = softmax(Fimage · FT
text), (14)

MV L = Upsample

(∑
i∈H

softmax(F̂i
patch · FT

text)

)
,

(15)

where H is the list of selected stages, and SV L and MV L

denote the image- and pixel-level anomaly scores, respec-
tively. When some normal samples are available, we utilize
the same visual encoder and feature adapter to extract multi-
hierarchy normal patch tokens and store them in memory
banks Bi ∈ RNi×C . Then, for the testing patch tokens, we
compute the distance between each token and its most sim-
ilar counterpart in the memory bank, and the localization
result MV V based on vision-vision similarities is yielded as
follows:

MV V = Upsample

(∑
i∈H

(1−max(F̂i
patch · (Bi)T ))

)
(16)

The maximum value of MV V is taken as the image-
level anomaly scores SV V . The predictions from vision-
language and vision-vision similarities are summed up as
final predictions. We train the anomaly detection model on
the available normal sample and the synthetic samples for
200 epochs with batch size 16. We use Adam optimizer
with a learning rate of 1e4 and the CosineAnnealingLR
scheduler.

B. User Study on Anomaly Generation Quality
To better assess the quality of our generated anomalous
samples, we conducted a user study with 20 participants.
The participants were shown exemplar normal samples of
the five tested categories and asked to choose the most re-
alistic anomalous images. We provided the participants
with two groups of samples, as shown in Figure 11. In
group 1, we randomly sampled three images each from
100 anomalous samples generated by Cut&Paste, DRAEM,
NSA, AnomalyDiffusion, and our proposed AnomalyAny.
Participants were asked to choose the three most realis-
tic images for each category. For this group, we get
a total vote of 300: 20(participants) · 5(categories) ·
3(selected samples per category). In group 2, we ran-
domly sampled two images each from real anomalies in the
test set and from the 100 images generated by our method.
Participants were then asked to choose the two most re-
alistic images for each category. For this group, we get



(a) Normal References (b) Group 1 (c) Group 2

Figure 11. Samples for user study. (a) Normal references. (b) Group1: Samples of each column from left to right are generated by:
Cut&Paste; DRAEM; NSA; AnomalyDiffusion; the proposed AnomalyAny; (c) Group2: Samples of each column from left to right are
real anomalous data samples from the dataset and anomalous images generated by our method AnomalyAny.



a total vote of 200: 20(participants) · 5(categories) ·
2(selected samples per category). The survey results are
reported in Table 4 where we show the total votes from the
20 participants for each group. It is evident that our method
surpasses other anomaly generation methods in terms of
authenticity, even compared to AnomalyDiffusion, which
leverages real test samples for training. Additionally, when
mixed with real normal samples, our generated anomalous
images are realistic enough to be misclassified.

Group 1 Group 2

Cut&Paste DRAEM NSA AnomalyDiffusion Ours Real Ours

6 33 61 64 136 99 101

Table 4. Results of user study for anomaly generation quality
assessment across two groups.

C. More Anomaly Generation Results

More comparisons of anomaly generation results be-
tween other anomaly generation methods and AnomalyAny
are provided in Figure 12. Additionally, to show the gener-
alization ability and controllability of AnomalyAny, Figure
13 show more generation results with different object types
and anomaly types with descriptions provided in Table 5.

D. Ablations on Mask Control
In Figure 14, we show results using manually labeled re-
gional masks for more precise anomaly locations, demon-
strating our finer controllability over anomaly regions when
needed.

E. Ablations on Hyperparameters
In Figure 15, we present the visual results ablations on the
hyperparameters λ and ∆t in Equation (9). It shows that
a large λ value causes artifacts due to overly fast updates,
while a small λ value results in insufficient optimization. A
large ∆t introduces artifacts from fast updates early in the
process, while a small ∆t leads to artifacts from inadequate
detail refinement in the final steps.

F. More Ablations on attention-guided &
prompt-guided optimization

In Figure 16, we provide more results from ablations
on different optimization strategies, as shown in (b)(c)(d),
and on prompt-guided optimization objectives, as shown in
(d)(e)(f)(g). The results from ablations on different opti-
mization strategies further validate that our attention guid-
ance module effectively enforces the generation of specified
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Figure 12. Qualitative comparisons between existing anomaly
generation methods. Since AnomalyDiffusion does not provide
results on VisA, its corresponding generation results are replaced
by a blank.

anomalies, while the detailed prompt guidance module en-
hances semantic richness and improves generation quality.

For the prompt-guided optimization objectives, the best
overall results are achieved with our proposed method,
which incorporates all optimization objectives. We observe
that in some cases (as shown in the first two rows for cap-
sule and leather examples), the image and prompt optimiza-
tion objectives significantly improve generation results for
challenging concepts. In other cases, the difference is less
pronounced. Across all scenarios, Limg consistently helps
generate more salient anomaly patterns in the image with
more concentrated anomaly attention maps. Meanwhile,
in cases where the anomaly description is less ambiguous
(e.g., ”rust” or ”hole”), the impact of Lprompt on optimiza-
tion is relatively minor.

G. More Anomaly Detection Results

In this section, we present additional results in Table 6 for
2-shot and 4-shot anomaly detection. Specifically, we con-
dition on 2 and 4 normal images, generating 200 and 400
synthetic anomalous images respectively for training. Ad-
ditionally, we provide per-category few-shot anomaly de-



[CLS] [Anomaly State] GPT-Generated Detailed Descriptions

Screw

Damaged The head of the screw is damaged or worn-out.
Scratched A screw with several deep, thin scratches.
Broken on the top The screw is partially broken on the tip.
Bent The screw is bent along its shaft, making it difficult to use.
Rust The screw is covered in rust, weakening its structure and making it difficult to use.

Leather

Damaged Leather that has dried out or aged can develop damaged cracks.
Scratched Leather that has been scratched with deep, gouging lines.
Cut The leather has a visible cut, creating a split in its surface.
Stained Leather that is discolorations caused by spills (oil, ink, or dyes).
Wet Leather that appears darker, unevenly discolored, and may develop a tacky texture or water spots as it dries.

Bowl

Broken A broken bowl that has visible cracks with jagged or uneven edges.
Dirty A dirty bowl that has visible stains on its surface.
Colored The bowl has uneven patches of color, giving it a stained or discolored appearance.
Cracked The bowl has a visible crack running through its surface, compromising its strength and usability.
Stained The bowl has visible stains, with patches of discoloration or residue marring its surface.

Vase

Broken The vase has fragments missing, making it unusable.
Cracked The vase has a visible crack running along its surface, threatening its structural integrity.
Colored The vase has patches of uneven hues that alter its original appearance.
Hole The vase has a hole piercing its surface, preventing it from holding liquids properly.
Deformed The vase is misshapen, with uneven curves.

Phone Screen

Scratched The phone screen has visible scratches, with fine lines marring its smooth surface.
Broken The phone screen is shattered, with pieces of glass splintered or missing.
Cracked The phone screen has a crack running across it
Colored The phone screen displays abnormal patches of color, such as rainbow streaks.
Fingerprint The phone screen has a smudged fingerprint, leaving an oily mark on its surface.

Table 5. Corresponding descriptions for anomaly generation in Figure 13

Damaged Scratched Broken on the tip Bent RustReference

Damaged Scratched Cut Stained WetReference

Broken Dirty Colored Cracked StainedReference

Broken Cracked Colored Hole DeformedReference

Scratched Broken Cracked Colored FingerprintReference

“The head of the screw is damaged or worn-out”
“a screw with several deep, thin scratches”
"The screw is partially broken on the tip”
"The screw is bent along its shaft, making it difficult to use.”
"The screw is covered in rust, weakening its structure and making it difficult to use."

"Leather that has dried out or aged can develop damaged cracks.”
“"Leather that has been scratched with deep, gouging lines.”
"The leather has a visible cut, creating a split in its surface."
" Leather that is discolorations caused by spills (oil, ink, or 
dyes)”
“ Leather that appears darker, unevenly discolored, and may 
develop a tacky texture or water spots as it dries.”

"A broken bowl that has visible cracks with jagged or uneven edges”
a dirty bowl that has visible stains on its surface,
" "The bowl has uneven patches of color, giving it a stained or discolored appearance."
"The bowl has a visible crack running through its surface, compromising its strength and 
usability.”
"The bowl has visible stains, with patches of discoloration or residue marring its surface."

•Phone Screen: Scratched - "The phone screen has visible scratches, with fine lines 
marring its smooth surface."
•Phone Screen: Broken - "The phone screen is shattered, with pieces of glass splintered or 
missing."
•Phone Screen: Cracked - "The phone screen has a crack running across it
•Phone Screen: Colored - "The phone screen displays abnormal patches of color, such as 
rainbow streaks "

•Vase: Broken 
•Vase: Cracked
structural integrity."
•Vase: Colored
•Vase: Hole - "The vase has a hole piercing its surface, preventing it from holding liquids 
properly."
•Vase: Deformed
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Figure 13. Anomaly generation results for arbitrary objects and
anomaly descriptions.

tection results on MVTec and VisA in Table 8 to Table 13.
Visual results of few-shot anomaly detection are provided
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Figure 14. Ablation on mask control.
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Figure 15. Ablation on hyperparameters.

in Figure 17. Full-shot detection results are listed in Ta-
ble 7 with per-category results in Table 14 and Table 15.
Specifically, we condition on all normal images, generating
3-5 anomalous images with each normal image for training.
We provide t-test results of few-shot anomaly detection in
Table 16 for statistical completeness.



𝑐	= “hole” 𝑐′	= “A grid that has a small hole with rough edges”

(c) w/o 
prompt-guided 
optimization

(b) w/o 
attention-guided 

optimization

(d) Ours(a) Reference

𝑐	= “damaged” 𝑐′	= "Leather that has dried out or aged can develop damaged 
cracks."

𝑐	= “scratched” 𝑐′	= “A wood surface with wide, deep scratches that cut into the 
wood grain”

𝑐	= “rust” 𝑐′	= “A screw that has reddish-brown or dark orange patches, 
giving it a rough, uneven texture, with areas that appear flaky 
or crusty.”

𝑐	= “broken” 𝑐′	= “A capsule that is broken with a large poked area, 
exposing the white matter inside”

(f) w/o 𝐿!"#(e) w/o 𝐿$%% (g) w/o 𝐿&'("&%

Figure 16. Ablation on optimization strategies and objectives.



Figure 17. Anomaly detection results in the 4-shot setup. For each pair, the original image, ground truth, and detection results are listed
from the top to the bottom.



Setup Methods MVTec AD VisA

I-AUC I-F1 P-AUC P-F1 PRO I-AUC I-F1 P-AUC P-F1 PRO

1-shot

PaDiM 76.6±3.1 88.2±1.1 89.3±0.9 40.2±2.1 73.3±2.0 62.8±5.4 75.3±1.2 89.9±0.8 17.4±1.7 64.3±2.4

PatchCore 83.4±3.0 90.5±1.5 92.0±1.0 50.4±2.1 79.7±2.0 79.9±2.9 81.7±1.6 95.4±0.6 38.0±1.9 80.5±2.5

WinCLIP+ 93.1±2.0 93.7±1.1 95.2±0.5 55.9±2.7 87.1±1.2 83.8±4.0 83.1±1.7 96.4±0.4 41.3±2.3 85.1±2.1

AnomalyGPT 94.1±1.1 - 95.3±0.1 - - 87.4±0.8 - 96.2±0.1 - -
PromptAD 94.6±1.7 - 95.9±0.5 - - 86.9±2.3 - 96.7±0.4 - -

Ours 94.9±0.4 94.7±0.4 95.4±0.2 57.3±0.0 91.9±0.0 89.7±0.8 85.8±0.5 97.7±0.4 43.2±0.4 92.5±0.1

2-shot

PaDiM 78.9±3.1 89.2±1.1 91.3±0.7 43.7±1.5 78.2±1.8 67.4±5.1 75.7±1.8 92.0±0.7 21.1±2.4 70.1±2.6

PatchCore 86.3±3.3 92.0±1.5 93.3±0.6 53.0±1.7 82.3±1.3 81.6±4.0 82.5±1.8 96.1±0.5 41.0±3.9 82.6±2.3

WinCLIP+ 94.4±1.3 94.4±0.8 96.0±0.3 58.4±1.7 88.4±0.9 84.6±2.4 83.0±1.4 96.8±0.3 43.5±3.3 86.2±1.4

AnomalyGPT 95.5±0.8 - 95.6±0.2 - - 88.6±0.7 - 96.4±0.1 - -
PromptAD 95.7±1.5 - 96.2±0.3 - - 88.3±2.0 - 97.1±0.3 - -

Ours 95.8±0.2 95.2±0.2 96.0±0.2 58.8±0.2 92.6±0.1 91.3±0.4 87.2±0.6 97.9±0.4 44.9±0.3 92.7±0.1

4-shot

PaDiM 80.4±2.5 90.2±1.2 92.6±0.7 46.1±1.8 81.3±1.9 72.8±2.9 78.0±1.2 93.2±0.5 24.6±1.8 72.6±1.9

PatchCore 88.8±2.6 92.6±1.6 94.3±0.5 55.0±1.9 84.3±1.4 85.3±2.1 84.3±1.3 96.8±0.3 43.9±3.1 84.9±1.4

WinCLIP+ 95.2±1.3 94.7±0.8 96.2±0.3 59.5±1.8 89.0±0.8 87.3±1.8 84.2±1.6 97.2±0.2 47.0±3.0 87.6±0.9

AnomalyGPT 96.3±0.3 - 96.2±0.1 - - 90.6±0.7 - 96.7±0.1 - -
PromptAD 96.6±0.9 - 96.5±0.2 - - 89.1±1.7 - 97.4±0.4 - -

Ours 96.4±0.1 95.1±0.1 96.2±0.1 59.8±0.1 93.0±0.0 91.7±1.0 87.1±0.1 97.8±0.4 47.9±0.2 93.4±0.1

Table 6. Comparison of few-shot anomaly detection on MVTec AD and VisA. Results are reported over 5 runs. The best results are in
bold, and the second-best results are underlined.

Methods MVTec AD VisA

I-AUC I-F1 P-AUC P-F1 PRO I-AUC I-F1 P-AUC P-F1 PRO

UniAD 96.5 98.8 96.8 43.4 90.7 88.8 90.8 98.3 33.7 85.5
SimpleNet 95.3 98.4 96.9 45.9 86.5 87.2 87.0 96.8 34.7 81.4

DiAD 97.2 99.0 96.8 52.6 90.7 86.8 88.3 96.0 26.1 75.2
AnomalyGPT 97.4 - 93.1 - - - - - - -

Ours 98.4 96.9 97.4 65.1 94.7 95.8 91.9 98.7 58.7 97.7

Table 7. Comparison of full-shot anomaly detection on MVTec AD and VisA. The best results are in bold, and the second-best results
are underlined.



Category I-AUC I-F1 P-AUC P-F1 PRO
bottle 98.9±0.1 97.9±0.5 96.3±0.0 71.0±0.2 92.7±0.0
cable 89.1±7.6 87.8±4.5 91.7±0.0 36.4±2.2 82.8±0.2

capsule 93.8±1.6 94.4±0.5 97.3±0.0 44.8±0.0 96.2±0.0
carpet 100.0±0.0 100.0±0.0 99.0±0.0 75.1±0.1 97.5±0.0
grid 97.3±1.3 96.1±2.2 97.2±0.0 49.8±0.1 92.0±0.1

hazelnut 99.9±0.0 99.3±0.2 98.4±0.0 63.5±0.1 97.3±0.0
leather 100.0±0.0 100.0±0.0 99.7±0.0 62.2±0.2 99.5±0.0

metal nut 95.6±9.3 95.3±4.3 91.6±0.1 58.8±0.5 90.7±0.0
pill 93.7±0.4 96.0±0.1 94.3±0.0 56.6±0.2 97.0±0.0

screw 74.9±3.1 87.2±1.3 97.8±0.0 42.5±0.3 92.3±0.0
tile 99.6±0.0 98.8±0.2 95.6±0.0 73.2±0.0 93.3±0.0

toothbrush 94.1±2.7 93.1±5.6 98.5±0.0 56.6±1.3 94.7±0.0
transistor 91.4±2.1 80.7±4.4 79.6±0.0 37.1±0.2 64.0±0.2

wood 99.6±0.0 98.5±0.1 96.6±0.0 70.0±0.0 96.8±0.0
zipper 96.4±0.8 96.1±0.4 97.4±0.0 61.4±0.4 91.4±0.0

Average 94.9±0.4 94.7±0.4 95.4±0.2 57.3±0.0 91.9±0.0

Table 8. Per-category anomaly detection performance on
MVTec AD in the 1-shot setup. We report the mean and stan-
dard deviation over 5 random seeds for each measurement.

Category I-AUC I-F1 P-AUC P-F1 PRO
bottle 99.5±0.1 98.6±0.1 93.2±0.1 62.3±1.8 88.7±0.4
cable 89.3±1.4 86.5±2.0 94.9±0.0 41.1±0.8 86.0±0.3

capsule 95.1±1.1 94.6±0.9 96.6±0.2 44.9±0.0 96.1±0.1
carpet 100.0±0.0 100.0±0.0 99.3±0.0 76.5±0.1 98.1±0.0
grid 95.4±1.2 93.5±1.9 98.2±0.0 52.2±0.2 93.9±0.0

hazelnut 99.8±0.0 98.9±0.1 98.0±0.0 57.4±0.3 96.9±0.0
leather 100.0±0.0 100.0±0.0 99.7±0.0 66.1±0.3 99.5±0.0

metal nut 99.8±0.0 99.1±0.4 94.6±0.1 66.7±0.5 93.2±0.1
pill 96.4±0.8 96.8±0.3 94.8±0.0 59.0±0.3 96.9±0.0

screw 78.8±3.2 88.4±0.1 98.2±0.0 46.6±0.2 93.5±0.0
tile 100.0±0.0 99.9±0.1 97.1±0.0 74.5±0.0 94.8±0.0

toothbrush 93.4±0.9 93.1±0.1 98.7±0.0 59.5±1.0 94.3±0.0
transistor 88.9±2.0 82.5±4.1 85.1±0.2 41.2±0.0 67.6±0.7

wood 99.4±0.0 97.7±0.1 96.9±0.0 70.9±0.1 97.0±0.0
zipper 99.4±0.0 98.3±0.4 97.7±0.0 63.6±1.5 92.8±0.4

Average 95.8±0.1 95.2±0.2 96.0±0.2 58.8±0.2 92.6±0.1

Table 9. Per-category anomaly detection performance on
MVTec AD in the 2-shot setup. We report the mean and stan-
dard deviation over 5 random seeds for each measurement.

Category I-AUC I-F1 P-AUC P-F1 PRO

bottle 99.2±0.0 98.0±0.5 96.9±0.0 73.0±0.1 93.7±0.0

cable 90.6±0.8 87.1±3.1 93.7±0.0 43.4±0.9 86.6±0.1

capsule 96.4±0.4 95.8±0.2 98.1±0.0 46.9±0.1 97.3±0.0

carpet 100.0±0.0 100.0±0.0 99.2±0.0 75.7±0.0 97.8±0.0

grid 98.4±0.8 96.9±2.6 98.1±0.0 52.4±0.0 93.6±0.0

hazelnut 98.9±0.2 97.6±0.4 98.6±0.0 63.1±0.3 97.3±0.0

leather 100.0±0.0 100.0±0.0 99.7±0.0 63.2±0.2 99.4±0.0

metal nut 99.3±0.3 98.4±0.4 93.2±0.0 64.7±0.1 92.8±0.0

pill 97.3±0.1 97.4±0.1 94.9±0.0 59.4±0.1 97.3±0.0

screw 85.5±0.1 88.6±0.1 98.3±0.0 49.0±0.3 93.6±0.0

tile 99.8±0.0 98.7±0.1 95.9±0.0 73.3±0.0 93.6±0.0

toothbrush 94.3±1.3 94.1±0.8 98.6±0.0 60.2±0.9 94.2±0.1

transistor 87.5±1.9 75.9±4.1 82.8±0.0 39.5±0.2 67.4±0.1

wood 99.5±0.0 97.9±0.2 96.5±0.0 69.6±0.0 96.7±0.0

zipper 98.8±0.1 98.5±0.2 97.9±0.0 64.5±0.1 93.2±0.0

Average 96.4±0.1 95.1±0.1 96.2±0.1 59.8±0.1 93.0±0.0

Table 10. Per-category anomaly detection performance on
MVTec AD in the 4-shot setup. We report the mean and stan-
dard deviation over 5 random seeds for each measurement.

Category I-AUC I-F1 P-AUC P-F1 PRO

candle 90.8±0.3 85.3±0.7 98.9±0.0 37.6±0.1 98.0±0.0

capsules 91.1±2.6 88.5±0.4 98.2±0.0 47.9±2.0 94.2±0.1

cashew 88.9±16.6 88.9±5.1 96.6±0.1 59.3±0.9 95.6±0.0

chewinggum 97.4±0.1 95.2±0.3 99.6±0.0 77.1±0.2 92.6±0.1

fryum 96.2±0.9 94.7±0.8 95.4±0.0 40.8±0.1 92.2±0.0

macaroni1 86.6±5.2 79.6±5.9 99.7±0.0 30.1±0.8 96.2±0.1

macaroni2 79.2±2.1 73.0±1.2 98.4±0.0 28.3±1.0 90.5±0.7

pcb1 90.8±2.0 86.1±1.5 98.5±0.0 49.5±4.6 93.6±0.0

pcb2 84.3±4.1 78.1±4.7 96.2±0.0 30.8±0.4 83.7±0.0

pcb3 78.0±5.2 74.3±1.7 94.9±0.0 32.7±11.4 86.0±0.0

pcb4 96.8±1.0 92.4±3.7 96.9±0.0 36.1±0.3 90.2±0.3

pipe fryum 96.4±0.6 93.1±2.3 98.5±0.0 47.7±0.1 97.6±0.0

Average 89.7±0.8 85.8±0.5 97.7±0.4 43.2±0.4 92.5±0.1

Table 11. Per-category anomaly detection performance on
VisA in the 1-shot setup. We report the mean and standard devi-
ation over 5 random seeds for each measurement.

Category I-AUC I-F1 P-AUC P-F1 PRO

candle 90.5±0.5 84.4±0.9 98.9±0.0 39.0±0.1 98.0±0.0

capsules 94.5±1.1 91.0±1.1 98.3±0.0 49.3±0.5 94.5±0.2

cashew 90.7±0.7 89.5±0.2 97.0±0.0 59.6±0.1 95.9±0.0

chewinggum 97.6±0.2 95.2±0.5 99.5±0.0 76.5±0.3 92.4±0.0

fryum 97.0±0.1 95.0±0.2 96.1±0.0 44.9±0.1 92.6±0.1

macaroni1 89.6±0.1 82.4±0.6 99.7±0.0 29.3±0.3 96.3±0.0

macaroni2 77.4±19.9 72.7±6.9 98.4±0.0 28.3±0.4 88.8±0.0

pcb1 92.0±0.5 87.7±0.5 98.5±0.0 49.3±3.0 93.9±0.0

pcb2 86.7±2.0 80.2±2.0 96.8±0.0 34.5±1.9 84.5±0.1

pcb3 84.6±0.4 78.6±0.2 95.4±0.0 40.5±4.5 86.1±0.1

pcb4 97.0±0.2 93.2±0.2 97.1±0.0 35.9±0.2 91.1±0.2

pipe fryum 97.9±0.0 95.2±0.9 98.7±0.0 51.2±0.1 97.6±0.0

Average 91.3±0.4 87.2±0.6 97.9±0.4 44.9±0.3 92.7±0.1

Table 12. Per-category anomaly detection performance on
VisA in the 2-shot setup. We report the mean and standard devi-
ation over 5 random seeds for each measurement.

Category I-AUC I-F1 P-AUC P-F1 PRO

candle 92.8±0.3 86.1±0.9 99.0±0.0 39.8±0.1 98.3±0.0

capsules 94.7±0.9 91.6±2.3 98.4±0.0 50.5±0.3 94.6±0.1

cashew 89.9±13.4 89.5±5.2 97.1±0.0 62.6±0.3 95.8±0.0

chewinggum 97.2±0.3 95.1±0.1 99.5±0.0 75.8±0.4 92.5±0.3

fryum 96.4±1.1 93.7±1.2 96.3±0.0 46.2±0.1 93.1±0.0

macaroni1 89.3±2.0 82.2±2.8 99.7±0.0 29.0±2.2 96.8±0.0

macaroni2 79.8±16.4 74.7±8.8 98.7±0.0 29.0±0.5 90.9±0.1

pcb1 88.3±11.4 81.3±17.4 99.2±0.0 70.1±1.1 93.9±0.0

pcb2 87.8±1.0 80.5±1.9 97.1±0.0 35.7±0.6 85.7±0.1

pcb3 89.6±1.2 82.3±3.6 96.2±0.0 47.2±1.3 89.0±0.1

pcb4 97.1±0.6 93.0±2.3 97.5±0.0 36.9±0.0 92.6±0.1

pipe fryum 97.3±1.7 94.9±1.2 98.8±0.0 52.3±0.6 97.6±0.0

Average 91.7±1.0 87.1±0.1 97.8±0.4 47.9±0.2 93.4±0.1

Table 13. Per-category anomaly detection performance on
VisA in the 4-shot setup. We report the mean and standard devi-
ation over 5 random seeds for each measurement.



Category I-AUC I-F1 P-AUC P-F1 PRO

bottle 99.7 98.4 97.5 74.9 94.7
cable 94.9 92.6 95.9 53.0 90.6

capsule 98.3 97.3 98.5 51.7 98.0
carpet 100.0 99.4 99.3 75.3 98.2
grid 99.8 99.1 99.1 52.7 96.6

hazelnut 99.7 98.6 99.4 76.3 98.5
leather 100.0 100.0 99.7 60.4 99.5

metal nut 100.0 100.0 95.8 73.9 95.2
pill 98.5 98.3 96.3 63.6 97.9

screw 96.6 95.1 99.0 60.6 96.0
tile 100.0 99.4 97.2 74.6 94.8

toothbrush 96.9 95.2 99.5 71.5 97.8
transistor 94.3 84.2 88.0 45.2 70.0

wood 99.7 98.4 97.1 70.9 97.0
zipper 98.0 96.7 98.8 71.5 96.3

Average 98.4 96.9 97.4 65.1 94.7

Table 14. Per-category anomaly detection performance on MVTec
AD in the full-shot setup.

Category I-AUC I-F1 P-AUC P-F1 PRO

candle 95.6 90.0 99.3 40.1 98.2
capsules 96.2 93.8 99.1 60.1 96.6
cashew 97.4 94.5 98.2 70.4 94.6

chewinggum 98.7 97.0 99.5 75.3 91.8
fryum 98.4 97.5 97.4 53.6 93.9

macaroni1 95.3 88.5 99.9 36.4 98.5
macaroni2 84.7 79.3 99.6 28.9 96.7

pcb1 95.9 91.8 98.8 41.8 95.4
pcb2 94.1 88.2 98.2 40.3 91.5
pcb3 95.9 90.4 97.5 52.9 93.4
pcb4 99.4 96.6 98.4 46.5 94.9

pipe fryum 98.4 95.9 99.1 58.7 97.9

Average 95.8 91.9 98.7 50.4 95.3

Table 15. Per-category anomaly detection performance on VisA in
the full-shot setup.

Method PaDiM PatchCore WinCLIP+ AnomalyGPT PromptAD
p-value 5e− 7 8e− 5 1e− 7 0.005 0.7

Table 16. t-test on anomaly detection results.
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