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1. Comparison of Related Settings
In Table 1, we make comparisons between the task of Unsu-
pervised Continual Domain Shift Learning (UCDSL) [14]
with the related settings, including fine-tuning [9], contin-
ual learning [6], unsupervised domain adaptation [7], con-
tinual domain adaptation [25], source-free domain adap-
tation [10], and single source domain generalization [5].
UCDSL requires the model to simultaneously handle do-
main generalization, domain adaptation and forgetting alle-
viation with only unlabeled target data, making it extremely
challenging.

Table 1. Comparison between UCDSL and related settings.

Topics Source Target Target Target Domain Target Domain Forgetting
Data Data Label Generalization Adaptation Alleviation

Fine-Tuning ✗ ✓ ✓ ✗ ✓ ✗
Continual Learning ✗ ✓ ✓ ✗ ✓ ✓
Unsupervised DA ✓ ✓ ✗ ✗ ✓ ✗

Continual DA ✓ ✓ ✗ ✗ ✓ ✓
Source-Free DA ✗ ✓ ✗ ✗ ✓ ✗

Single Source DG ✓ ✗ ✗ ✓ ✗ ✗

UCDSL ✗ ✓ ✗ ✓ ✓ ✓

Additional Related Work. Continual learning (CL),
also known as incremental learning or life-long learning,
aims to learn a series of new tasks without forgetting knowl-
edge obtained from the preceding tasks. Recently, the idea
of CL has been extended to Continual Domain Adaptation
(CDA) [2, 15, 20, 21, 23] to tackle continual domain drifts
in dynamic environments by avoiding catastrophic forget-
ting. [2] adopts domain adversarial training and uses sam-
ple replay techniques to retain performance on previous do-
mains. [23] learns by using domain-specific memory buffer
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for each domain. AdaGraph [16] learns domain-specific BN
parameters by encoding inter-domain relationships with do-
main metadata. These methods start from a labeled source
domain and continually adapts to a series of target domains,
while avoiding performance drop on previously seen do-
mains.

2. Detail of Multi-Prototype Learning

Theorem 1: Error bound for single classifier (Theorem
4.1 in [27]). Let D̃s and D̃t denote the induced distribution
over the feature space for each distribution Ds and Dt over
the original input space. The following inequality holds for
the risk εt(ĥ) with single classifier on the target domain Dt:

εt(ĥ) ≤ min{εs(hs, ht), εt(hs, ht)}+εs(ĥ)+dH(D̃s, D̃t).
(1)

The first term measures the disagreement between the
source and target labeling functions, the second term is the
source error, and the third term quantifies the discrepancy
between the marginal feature distributions. The bound
identifies three key factors for successful domain adapta-
tion: small source risk, close marginal distributions, and
consistent labeling functions across domains. Note that this
bound was first derived by Zhao et al. [27]. Please refer to
Theorem 4.1 therein for additional details.

Theorem 2: Error bound for multi-prototype learning. Let
D̃s and D̃t denote the induced distribution over the fea-
ture space for each distribution Ds and Dt over the origi-
nal input space. The following inequality holds for the risk
εt(ĥ) with multi-prototype learning (with mixed weights
{ws, wt}, ws+wt = 1, ws ≥ 0, wt ≥ 0, ĥ = wsĥs+wtĥt

) on the target domain Dt. We derive the error bound of
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multi-prototype learning as follows:

εt(ĥ) ≤ εt(ĥ, hs) + εt(hs, ht). (2)

Proof of Theorem 2.

εt(ĥ) = εt(ĥ, ht)

= EX∼Dt [|ĥ(X)− ht(X)|]

= EX∼Dt [|ĥ(X)− hs(X) + hs(X)− ht(X)|]

≤
[
EX∼Dt [|ĥ(X)− hs(X)|] + EX∼Dt [|hs(X)− ht(X)|]

]
= εt(ĥ, hs) + εt(hs, ht).

(3)

Lemma 1. Let D̃s and D̃t denote the induced distribution
over the feature space for each distribution Ds and Dt over
the original input space. Then for any hs ∈ H, ht ∈ H, we
have |εs(hs, ht)− εt(hs, ht)| ≤ dH(D̃s, D̃t).

Proof of Lemma 1. By definition, for any hs ∈ H, ht ∈ H,
we have:
|εs(hs, ht)− εt(hs, ht)| = sup

h∈H
|εs(hs, ht)− εt(hs, ht)|

= sup
h∈H

| (EX∼Ds [|hs(X)− ht(X)|]− EX∼Dt [|hs(X)− ht(X)|]) |.

(4)
Since ||h||∞ ≤ 1 for all h ∈ H, we have 0 ≤ |hs(X) −
ht(X)| ≤ 1 for all X ∈ Ds/Dt, where hs, ht ∈ H.

Here we define a hypothesis space H̃ :=
{sgn (|hs(X)− ht(X)| − z) |hs, ht ∈ H, 0 ≤ z ≤ 1}.
Then we use Fubini’s theorem to bound:
|EX∼Ds [|hs(X)− ht(X)|]− EX∼Dt [|hs(X)− ht(X)|]|

=

∣∣∣∣∫ 1

0
(Prs(|hs(X)− ht(X)| > z)− Prt(|hs(X)− ht(X)| > z)) dz

∣∣∣∣
≤

∫ 1

0
|(Prs(|hs(X)− ht(X)| > z)− Prt(|hs(X)− ht(X)| > z)) | dz

= sup
z∈[0,1]

|(Prs(|hs(X)− ht(X)| > z)− Prt(|hs(X)− ht(X)| > z))| .

(5)
Combining Eq. 4 and Eq. 5, and in view of the definition

of H-divergence, we have:

sup
hs,ht∈H

sup
z∈[0,1]

|(Prs(|hs(X) − ht(X)| > z) − Prt(|hs(X) − ht(X)| > z))|

= 2 sup
h̃∈H̃

|Prs(h̃(X) = 1) − Prt(h̃(X) = 1)|

= 2 sup
h̃∈H̃

|Prs(h̃) − Prt(h̃)|

= dH̃(Ds,Dt)

= dH(Ds,Dt).
(6)

From Lemma 1 in Section 3.2 of the paper [1], we can
deduce: dH(Ds,Dt) = dH(D̃s, D̃t).

Combining all the above equations completes the proof.
Note that, for notation simplicity, we opt to use dH̃(·) and

dH(·) interchangeably in our paper.

Comparisons of two bounds. Furthermore, we will show
that our error bound (Eq. 2) is tighter than that of the single
classifier (Eq. 1).

Firstly, based on Lemma1, our bound Eq. 2 is bounded
by:

εt(ĥ, hs) + εt(hs, ht) ≤ εs(ĥ, hs) + dH(D̃s, D̃t) + εt(hs, ht)

= εs(ĥ) + εt(hs, ht) + dH(D̃s, D̃t).
(7)

In addition, our bound can be rewritten as:

εt(ĥ) ≤
[
EDt [|ĥ− hs|] + EDt [|hs − ht|]

]
=

[∫
|ĥ− hs| · Prt(X)dX + EDt

[|hs − ht|]
]

=

[∫
|ĥ− hs| · Prs(X)

Prt(X)

Prs(X)
dX + EDt

[|hs − ht|]
]

=

[
EX∼Ds

[
Prt(X)

Prs(X)
· |ĥ− hs|

]
+ EDt [|hs − ht|]

]
= EX∼Ds

[
Prt(X)

Prs(X)
· |ĥ− hs|

]
+ εt(hs, ht).

=
Prt(X)

Prs(X)
εs(ĥ) + εt(hs, ht)

= εs(ĥ) + εt(hs, ht)

≤ εs(ĥ) + εs(hs, ht) + dH(D̃s, D̃t).
(8)

Note that since the density ratio Prt(X)
Prs(X) is intractable and

during implementation, this term is set to a constant and ig-
nored in the above calculation. Combining Eq. 7 and Eq. 8,
we can get the error bound of multi-prototype learning in
UCDSL is tighter than that of single classifier, thereby com-
pleting the proof.

3. Detail of Multi-Prototype Modeling
3.1. Learning Process
Source Domain Training. To initially learn the target task,
we train the multi-prototype model using the labeled source
domain S = D0. To enhance the model’s generalization
ability, we apply the RandMix [14] data augmentation tech-
nique. Following existing approaches [3], we minimize the
cross-entropy loss over the labeled source domain data with
RandMix augmentation:

LST(D0) = Lce
(x,y)∈D0

(fMPM(R(x); θMPM,0), y) , (9)

where fMPM is our multi-prototype model, θMPM,0 are the
parameters trained on D0, Lce is the cross-entropy loss for
classification, and R represents the RandMix augmenta-
tion [14].



Pseudo-label Generation. Existing methods usually
update the source model directly with unlabeled data from
the target domain. However, in our framework, we adapt
the domain model for the target domain to generate higher-
quality pseudo-labels.

Our domain model fDM for the target domain Dt is ini-
tialized using the parameters from the previous Dt−1 multi-
prototype model. This allows the domain model to leverage
the generalization ability of the multi-prototype model, fa-
cilitating efficient adaptation even in the presence of a large
domain gap. We train the domain model on Dt using infor-
mation maximization and self-supervised pseudo-labeling.
The adaptation loss is written as:

LDM(Dt) = Lshot
x∈Dt

(fDM(x; θDM,t)) , (10)

where fDM is our domain model, θDM,t are its parameters for
domain Dt, and Lshot is the cross-entropy loss with pseudo-
labels and SHOT regularization [13].

Since the multi-prototype model contains a set of proto-
type classifiers, we adopt the Shannon entropy-based strat-
egy to combine the inference results. The label is computed
as:

yLabel =

∑t−1
i=0 ȳiei∑t−1
i=0 ei

, (11)

where ȳi is the prediction from the i-th prototype classifier,
and ei is the Shannon entropy [22] of the prediction:

ei = −
∑
k

p̂ik log p̂ik, (12)

where p̂ik is the probability of class k for the i-th prototype
classifier.

After self-training, the domain model learns the knowl-
edge of the target domain Dt, and we use it to generate a
higher-quality pseudo-labeled dataset D̂t. Specifically, for
each unlabeled sample x, we compute its pseudo-label ŷ as
follows:

ŷ = argmax
k

δk(fDM(x; θDM,t)), (13)

where δk(·) is the k-th element of the softmax output.
Domain Adaptation Training. We create a new set of

prototypes for domain Dt. In this stage, the main goal is
to adapt the newly generated prototypes to domain Dt. We
freeze the feature extractor and update the newly introduced
prototypes with the following loss [13]:

LDA(D̂t) = Lce
(x,ŷ)∈D̂t

(fMPM(x; θMPM,t), ŷ) , (14)

where fMPM is our multi-prototype model with new proto-
types, and θMPM,t are the parameters of the multi-prototype
model on the domain Dt.

Domain Generation and Anti-forget Training. After
completing the domain adaptation process, we perform do-
main generalization and anti-forget training on the model.

To improve the model’s generalization, we use data aug-
mentation methods on the D̃t and the replay buffer (Dr)
data, such as RandMix [14], Mixup [26], and color jitter-
ing [4]. We train multi-prototype model using empirical risk
minimization (ERM) with the following domain generation
loss:

LDG(Da) = Lce
(x,ŷ)∈Da

(fMPM(R(x); θMPM,t), ŷ) , (15)

where Da = D̃t ∪ Dr and R represents the data augmenta-
tion technique.

Mitigating forgetting is crucial in unsupervised contin-
ual domain shift learning, where limited access to previous
domain data hampers performance on earlier tasks. Upon
encountering a new target domain, the performance of the
multi-prototype model on earlier domains degrades, a phe-
nomenon known as catastrophic forgetting. To address this
issue, we add a simple distillation loss term [24] to ensure
that the model retains knowledge from previous domains,
given by:

LAT(Dr) = Lkl
(x,ŷ)∈Dr

(fMPM(x; θMPM,t−1)||fMPM(x; θMPM,t)),
(16)

where Lkl represents the KL divergence loss, and
fMPM(x; θMPM,t−1) and fMPM(x; θMPM,t) are the predicted
probabilities from the previous t − 1 and current t multi-
prototype models, respectively.

Our total loss to update the multi-prototype model via
domain generation and anti-forget training is as follows:

LTOTAL = LDG + LAT. (17)

Through these two training strategies, our multi-prototype
model not only achieves good generalization on domains
following Dt, but also prevents forgetting of knowledge
from Dt and earlier domains.

3.2. Detail of BiGE
Derivation of Equation for Label Propagation.

We rewrite:

Y ∗ = argmin
Y

1

2
(

M+N∑
i,j=1

wij∥yi−yj∥22+µ

M+N∑
i=1

∥yi−si∥22),

(18)
as follows:

L(Y ) =
1

2
(

M+N∑
i,j=1

wij∥yi−yj∥22+µ

M+N∑
i=1

∥yi−si∥22). (19)

This defines the cost function L associated with Y .

Y ∗ = argmin
Y

L(Y ). (20)

Differentiating L(Y ) with respect to Y , we have

∂L
∂Y

∣∣∣∣
Y =Y ∗

= Y ∗ −WY ∗ + µ(Y ∗ − S) = 0. (21)



We expand the parentheses at the end to obtain the fol-
lowing expression:

∂L
∂Y

∣∣∣∣
Y =Y ∗

= (1 + µ)Y ∗ −WY ∗ − µS = 0. (22)

Dividing both sides of the equation by (1 + µ), we get:

Y ∗ − 1

1 + µ
WY ∗ − µ

1 + µ
S = 0. (23)

Introducing a new variable λ = 1
1+µ , we get:

(I− λW )Y ∗ = (1− λ)S. (24)

We define adjacency matrix W as:

wij = similarity(xi,xj) ∝ p(xi|xj)

=

K∑
k=1

p(xi|ck)p(ck|xj) =

K∑
k=1

sik · sjk∑M+N
j′=1 sj′k

.
(25)

We have p(xi|ck) = sik, where 1 ≤ i ≤ M + N and
1 ≤ k ≤ K. W is a symmetric matrix and wij = wji

(wij is the element in the i-th row and j-th column of the
matrix W ). Given the diagonal matrix V ∈ RK×K and
vkk =

∑M+N
i=1 sik, the W can be formulated as:

W = SV −1S⊤. (26)

Since W is Symmetric Normalized Laplacian Matrix and
λ < 1, (I− λW ) is invertible [17, 28]. We have:

Y ∗ = (1− λ) (I− λW )
−1

S

= (1− λ)
(
I− λSV −1S⊤)−1

S,
(27)

where I is the identical matrix, V is a diagonal matrix with
row sums of S as its elements and λ = 1

1+µ .
DGF Fuse. Since the multi-prototype model contains

a set of prototype classifiers, it is essential to select an
appropriate fusion method. Existing approaches, such as
averaging and entropy-based fusion, each have their own
drawbacks. The averaging fusion method assumes equal
importance for all prototypes, which is unrealistic. Proto-
types and test samples from the same domain should be as-
signed higher weights. The entropy-based fusion method,
while more adaptive, is sensitive to erroneous inference re-
sults, which can lead to amplified errors. To address these
issues, we propose DGF, an iterative graph-based method
for deriving more accurate weighting coefficients. We use
the domain-level predictions produced by DGF to guide the
fusion of prototypes from different domains. Our multi-
prototype prediction is:

yProto =

∑t
i=0 p̃iy

∗
i∑t

i=0 y
∗
i

, (28)

where p̃i is the predicted result from the i-th group of proto-
types, and y∗i is the corresponding domain-level prediction.
Ablation experiments show that the DGF weighting method
yields better results.

CGC Calibrate. We use the data from the replay buffer
to calibrate the inference results and further improve the ac-
curacy of the predictions. To obtain the final inference re-
sults, CGC employs a Shannon entropy-based [22] calibra-
tion strategy. The prototype-based inference results yProto

and the CGC inference results yCGC are combined using
weighted averaging. The weights are determined by the en-
tropies of their respective inference results. The final infer-
ence result y is computed as:

y =
yProto · eProto + yCGC · eCGC

eProto + eCGC
, (29)

where eProto and eCGC are the entropies of yProto and
yCGC , respectively. The entropy [22] is calculated as:
e = −

∑
k p̂k log p̂k, where p̂k is the probability of class

k. This strategy facilitates the integration of both global
and local semantic information, resulting in robust perfor-
mance.

3.3. Algorithm for Multi-Prototype Modeling

The pipeline of our MPM is summarized in Algorithm 1.
We train the initial multi-prototype model on the labeled
source domain D0. The model transitions into the Unsuper-
vised Continual Domain Shift Learning (UCDSL) phase.
For each unlabeled domain Dt, the domain model is ini-
tialized with the parameters θMPM,t−1 from the previous
multi-prototype model and is self-training on the unlabeled
dataset Dt. The domain model generates pseudo-labels
for Dt, which are used to train the multi-prototype mod-
ule θMPM,t. Next, we present the domain adaptation train-
ing process, along with the domain generation and anti-
forgetting training process for the MPM. After training, the
MPM demonstrates strong generalization on Dt and sub-
sequent domains, while also preventing the forgetting of
knowledge from both Dt and earlier domains. Finally, we
employ DGF to fuse the inference results and use CGC to
further calibrate the predictions.

3.4. Algorithm for Domain-aware Graph Fuser

The overall process of Domain-aware Graph Fuser (DGF)
in BiGE is summarized in Algorithm 2. We initialize the
prototypes using the mean vector of the labeled nodes be-
longing to this domain. We establish connections between
nodes relying on the prototypes and use label propagation
algorithm to obtain their labels. The prototypes are updated
based on the inference labels with exponential running av-
erage. This procedure is repeated nstep times to obtain the
domain labels of test samples from predicted Y ∗.



Algorithm 1 Multi-Prototype Modeling (MPM)
Input: Labeled source domain S = D0; Unlabeled continuously changing target domains T = {D1,D2, . . . ,DT }.
Output: Model output y.

1: Train the initial multi-prototype model on the labeled source domain D0 with Eq. 9.
2: for t = 1 to T do
3: Initialize Dt domain model with Dt−1 multi-prototype model.
4: Train Dt domain model using unlabeled data Dt with Eq. 10.
5: Generate pseudo-labeled dataset D̂t with Eq. 13.
6: Domain adaption training Dt multi-prototype model using pseudo-labeled dataset D̂t with Eq. 14.
7: Domain generation and anti-forget training Dt multi-prototype model using pseudo-labeled dataset D̂t and replay

buffer Dr with Eq. 17.
8: Obtain multi-prototype inference results yProto using DGF with Eq. 28.
9: Calibrate and obtain the final results y using CGC with Eq. 29.

10: end for
Return: y

Algorithm 2 Domain-aware Graph Fuser (DGF)

Input: Node set X = [x1, . . . ,xM ,xM+1, . . . ,xM+N]⊤ ∈ R(M+N)×C (M sample nodes xu (1 ≤ u ≤ M) from replay
buffer with domain labels and N query nodes xv (M + 1 ≤ v ≤ M +N) from test samples without domain labels).
Output: Test samples labels Y ∗.

1: Initialize prototypes: ck = 1
|Xk|

∑
(xi,li)∈Xk

xi.
2: for iter = 1 to nstep do

3: Graph construction: svk =
exp(−||xv−ck||22)∑K

k=1 exp(−||xv−ck||22)
, vkk =

∑M+N
i=1 sik and W = SV −1S⊤.

4: Graph label propagation: Y ∗ = (1− λ)
(
I− λSV −1S⊤)−1

S.

5: Update prototypes: c∗k = 1
|X|

∑M+N
i=1 xiy

∗
ik∑M+N

j=1 y∗
jk

, Cnew = (1− σ)C+ σC∗.

6: end for
Return: Y ∗

4. More Experimental Setup

4.1. Detail of Datasets

The PACS dataset consists data of 7 classes and 4 do-
mains: Photo (P), Art painting (A), Cartoon (C), and Sketch
(S). The Digits-5 dataset encompasses 5 domains with 10
classes (0 to 9): MNIST (mt), MNIST-M (mm), Synthetic
Digits (syn), SVHN (sv), and USPS (up). For Domain-
Net, we follow [3] to utilize a subset composed of the top
10 classes with the highest number of images in the entire
dataset. This selection is made to mitigate class imbalance.
The dataset contains common objects in six different do-
main: Quickdraw (Qu), Clipart (Cl), Painting (Pa), Info-
graph (In), Sketch (Sk), and Real (Re).

Experiments are conducted using 10 distinct domain or-
derings from each dataset. The specific orders follow the
previous work [3] and are presented in Table 2. The initial
domain in each ordering serves as the source domain, while
the remaining domains are treated as target domains. Three
independent trials with distinct random seeds (2022, 2023,
2024) are performed per ordering.

4.2. Detail of Evaluation

We use TDA, TDG and FA as the evaluation metrics [3]
to assess the model performance. To enable comparative
analysis across models, we calculate the average value of
each metric across all domains and introduce a composite
score, termed ”All”, representing the overall average of all
metrics combined. This composite score allows us to eval-
uate the overall performance of the models in a compre-
hensive manner. By considering both the individual met-
rics and the composite score, we gain a holistic understand-
ing of the models’ performance across various domains and
their adaptation, generalization, and forgetting alleviation
capabilities during the unsupervised continual domain shift
learning process. It is worth noting that CoDAG [3] uses the
DA model to evaluate TDA, while the DG model is used to
evaluate TDG and FA. Although this setting will lead to in-
creased performance, we believe it is not a practical setting
as two separate models are required to be maintained. In
this work, we simply use the final DG model to evaluate all
metrics.



Table 2. The list of different domain orders from each dataset for the main experiments, which are referenced from [3].

Order PACS Digits-five DomainNet

1 A→C→P→S SN→MT→MM→SD→US Re→Pa→In→Cl→Sk→Qu
2 A→C→S→P SN→SD→MT→US→MM Cl→In→Pa→Qu→Re→Sk
3 A→P→C→S MM→US→MT→SD→SN Cl→Re→In→Qu→Sk→Pa
4 C→A→S→P MT→MM→SN→SD→US In→Qu→Cl→Pa→Re→Sk
5 C→S→P→A MT→MM→US→SN→SD Pa→Sk→Qu→In→Re→Cl
6 P→A→C→S SD→MM→SN→MT→US Qu→Re→Cl→Pa→In→Sk
7 P→S→A→C SD→SN→US→MM→MT Qu→Sk→Cl→In→Pa→Re
8 P→S→C→A SD→US→MM→SN→MT Sk→In→Pa→Cl→Re→Qu
9 S→C→A→P US→MT→SN→MM→SD Sk→Re→Pa→Cl→Qu→In

10 S→P→C→A US→SD→SN→MM→MT Sk→Re→Qu→Pa→In→Cl

4.3. Detail of Implementation
Empirical evaluation is conducted on three benchmark
datasets: PACS [12], Digits-five [7, 8, 11, 18], and Do-
mainNet [19]. Consistent training procedures spanning 80
epochs per domain were maintained across all domains and
orderings for each dataset. The cost balance coefficient
hyper-parameter λ is set to 0.7 ,the exponential running av-
erage σ set to 0.4 and the number of iteration steps nstep

is set to 25 for all datasets. For the optimization process,
stochastic gradient descent with momentum 0.9, weight de-
cay 0.0005, and a polynomial learning rate scheduler is
utilized. The initial learning rates are 0.01 for PACS and
Digits-five, and 0.005 for DomainNet. Mini-batch training
is performed with a batch size of 64. Our data augmentation
pipeline is aligned with prior studies [3, 14], which encom-
passes random cropping, horizontal flipping, color jittering,
Mixup regularization, and grayscale.

5. More Experimental Results
Granular results across the 10 orderings on the PACS,
Digits-five, and DomainNet datasets are reported in Ta-
bles 3, 4, and 5, respectively. The results of the baseline
methods are referenced from [3]. Notably, the proposed
Multi-Phase Model (MPM) consistently surpasses all com-
parative baselines across orderings, datasets, and evaluation
metrics, substantiating its effectiveness and robustness.



Table 3. Comparison of the performance on the PACS dataset for different state-of-art methods in TDA, TDG, FA, and All. The results are
presented for each domain order. The results of the baseline models are referenced from [3]. The best results are highlighted in bold.

Metric Orders SHOT SHOT++ Tent AdaCon EATA L2D PDEN RaTP CoDAG Ours

TDA

Order 1 86.7 89.4 84.0 85.8 86.7 84.5 83.7 85.5 88.3 90.4
Order 2 87.8 89.4 82.0 81.6 85.3 83.6 83.3 87.5 87.9 89.8
Order 3 88.7 88.8 82.5 82.8 85.6 82.9 79.9 85.6 89.0 90.7
Order 4 89.2 91.2 88.2 88.7 89.2 84.6 83.0 87.6 89.9 92.4
Order 5 85.2 85.4 88.6 86.4 88.2 80.1 78.2 85.6 89.8 92.9
Order 6 83.1 85.3 75.7 78.6 79.2 75.5 74.0 83.2 86.0 88.6
Order 7 66.9 69.9 74.4 74.0 73.0 71.3 71.6 75.9 80.6 82.5
Order 8 64.0 68.8 72.5 73.9 72.3 68.5 69.8 74.9 80.0 81.9
Order 9 91.5 92.2 69.6 77.8 73.0 83.0 82.5 89.6 92.6 94.2

Order 10 75.9 83.2 69.8 69.7 70.4 74.4 72.1 91.3 91.7 93.1
Avg. 81.9 84.4 78.7 79.9 80.3 78.8 77.8 84.7 87.6 89.7

TDG

Order 1 69.4 70.4 75.5 75.2 75.1 74.0 73.7 76.8 77.8 79.5
Order 2 67.0 68.7 73.1 74.6 72.5 76.0 71.6 76.7 77.2 79.2
Order 3 67.8 63.3 75.6 75.9 76.1 72.8 73.5 77.7 76.2 78.6
Order 4 69.5 66.1 78.5 77.1 77.4 78.1 77.2 79.5 82.5 84.5
Order 5 61.1 62.2 81.6 74.6 78.3 74.6 73.5 78.5 81.2 82.8
Order 6 48.5 50.0 56.2 57.2 57.4 56.5 55.8 63.4 62.1 64.7
Order 7 36.6 43.2 52.5 55.4 54.3 54.9 52.0 56.1 60.1 61.8
Order 8 37.2 39.0 50.6 52.1 51.8 52.8 51.5 53.8 58.8 60.9
Order 9 53.1 52.7 54.3 57.3 48.2 62.0 60.9 73.3 74.6 77.0

Order 10 39.1 44.6 60.2 52.3 50.0 56.7 54.6 69.7 71.4 73.0
Avg. 54.9 56.0 65.8 65.2 64.1 65.8 64.4 70.6 72.2 74.2

FA

Order 1 73.0 78.6 89.5 90.7 91.4 85.6 85.2 87.8 91.5 93.1
Order 2 72.4 82.3 79.5 77.7 83.7 80.6 77.4 79.8 86.8 89.2
Order 3 81.8 78.9 88.5 89.5 90.5 84.8 78.7 87.1 91.7 93.6
Order 4 76.9 77.6 83.3 84.5 87.7 77.5 77.1 83.2 89.4 91.3
Order 5 82.9 86.1 89.0 88.0 90.8 76.7 76.5 84.1 90.2 92.1
Order 6 79.6 84.3 81.4 80.7 83.5 71.0 70.9 86.4 87.7 89.6
Order 7 65.3 80.5 78.0 78.0 74.4 75.7 75.4 78.8 83.9 85.8
Order 8 58.3 83.5 73.3 74.0 73.3 72.6 72.1 74.2 83.5 85.5
Order 9 86.5 88.8 74.1 79.0 76.6 78.0 78.3 87.7 91.1 92.7

Order 10 72.0 89.5 73.1 73.7 74.3 73.4 71.4 89.8 91.8 94.1
Avg. 74.9 83.0 81.0 81.6 82.6 77.6 76.3 83.9 88.8 90.7

ALL

Order 1 76.4 79.5 83.0 83.9 84.4 81.4 80.9 83.4 85.9 87.7
Order 2 75.7 80.1 78.2 78.0 80.5 80.1 77.4 81.3 84.0 86.1
Order 3 79.4 77.0 82.2 82.7 84.1 80.2 77.4 83.5 85.6 87.6
Order 4 78.5 78.3 83.3 83.4 84.8 80.1 79.1 83.4 87.3 89.4
Order 5 76.4 77.9 86.4 83.0 85.8 77.1 76.1 82.7 87.1 89.3
Order 6 70.4 73.2 71.1 72.2 73.4 67.7 66.9 77.7 78.6 81.0
Order 7 56.3 64.5 68.3 69.1 67.2 67.3 66.3 70.3 74.9 76.7
Order 8 53.2 63.8 65.5 66.7 65.8 64.6 64.5 67.6 74.1 76.1
Order 9 77.0 77.9 66.0 71.4 65.9 74.3 73.9 83.5 86.1 88.0

Order 10 62.3 72.4 67.7 65.2 64.9 68.2 66.0 83.6 85.0 86.7
Avg. 70.6 74.5 75.2 75.6 75.7 74.1 72.9 79.7 82.9 84.9



Table 4. Comparison of the performance on the Digits-five dataset for different state-of-art methods in TDA, TDG, FA, and All. The results
are presented for each domain order. The results of the baseline models are referenced from [3]. The best results are highlighted in bold.

Metric Orders SHOT SHOT++ Tent AdaCon EATA L2D PDEN RaTP CoDAG Ours

TDA

Order 1 84.0 87.5 71.5 77.4 76.8 85.9 81.9 89.7 95.5 97.1
Order 2 91.6 94.8 77.5 76.0 76.9 91.3 89.5 90.7 95.7 97.0
Order 3 81.2 79.9 70.7 75.8 76.4 85.9 86.2 87.8 91.8 93.6
Order 4 73.8 79.6 59.9 64.9 65.0 77.6 75.3 86.8 90.9 92.9
Order 5 79.7 84.9 59.5 65.3 65.8 79.3 78.3 87.5 91.5 93.4
Order 6 87.0 92.1 80.2 80.5 81.1 89.7 89.0 90.0 93.6 95.3
Order 7 89.9 91.2 80.9 82.1 83.2 87.6 85.2 91.6 92.6 94.0
Order 8 89.0 91.5 80.5 80.2 82.2 88.6 85.9 89.7 92.6 93.9
Order 9 48.4 48.8 48.7 55.7 55.4 74.2 70.9 85.9 91.2 93.5

Order 10 61.2 62.9 57.3 58.3 57.1 82.9 80.3 87.1 91.1 92.3
Avg. 78.6 81.3 68.7 71.6 72.0 84.3 82.3 88.7 92.7 94.3

TDG

Order 1 66.2 68.3 71.1 72.6 71.3 72.3 69.4 77.0 79.2 81.3
Order 2 78.0 78.2 72.9 75.8 71.5 78.1 78.4 79.5 81.8 84.0
Order 3 68.3 65.8 70.7 67.0 69.6 71.7 70.5 77.0 77.1 78.5
Order 4 49.1 52.0 52.2 53.2 53.7 62.3 60.4 72.0 71.9 73.6
Order 5 54.0 54.1 53.1 51.1 53.6 62.7 61.4 72.9 72.5 73.8
Order 6 72.3 75.2 76.9 75.8 77.8 78.2 76.8 81.0 82.6 84.1
Order 7 74.8 76.0 76.9 73.0 76.1 78.1 76.8 81.9 81.5 82.5
Order 8 73.9 72.6 79.3 76.9 77.9 78.0 77.3 81.3 82.2 84.7
Order 9 35.1 39.0 41.3 41.3 44.1 61.7 61.7 73.2 73.2 74.8

Order 10 38.6 41.7 45.9 46.3 44.2 65.5 63.8 71.7 72.3 75.5
Avg. 61.0 62.3 64.0 63.3 64.0 70.9 69.7 76.8 77.4 79.3

FA

Order 1 60.0 67.1 67.8 75.2 76.2 75.2 71.4 83.8 87.5 88.9
Order 2 73.9 75.5 82.2 82.7 83.6 81.1 79.6 87.4 89.8 90.7
Order 3 70.7 71.2 72.9 80.4 85.5 85.1 81.9 90.1 91.7 93.4
Order 4 56.5 65.3 50.8 59.0 58.8 72.3 70.0 82.3 85.2 86.4
Order 5 77.0 79.1 61.4 71.7 71.2 74.9 73.9 85.2 87.8 89.2
Order 6 59.3 67.4 81.2 80.4 79.7 76.8 74.1 84.9 86.5 88.5
Order 7 62.2 71.0 79.8 82.1 80.9 77.6 76.1 84.7 86.4 89.5
Order 8 57.2 66.0 80.0 81.9 79.4 75.0 72.6 83.3 85.3 87.6
Order 9 25.1 30.0 33.1 56.8 61.8 72.5 68.5 85.1 86.5 88.1

Order 10 39.7 52.5 51.5 52.0 52.4 74.1 72.0 82.8 84.2 85.6
Avg. 58.2 64.5 66.1 72.2 73.0 76.5 74.0 85.0 87.1 88.8

ALL

Order 1 70.1 74.3 70.1 75.1 74.8 77.8 74.2 83.5 87.4 89.1
Order 2 81.2 82.8 77.5 78.2 77.3 83.5 82.5 85.9 89.1 90.6
Order 3 73.4 72.3 71.4 74.4 77.2 80.9 79.5 85.0 86.9 88.5
Order 4 59.8 65.6 54.3 59.0 59.2 70.7 68.6 80.4 82.7 84.3
Order 5 70.2 72.7 58.0 62.7 63.5 72.3 71.2 81.9 83.9 85.5
Order 6 72.9 78.2 79.4 78.9 79.5 81.6 80.0 85.3 87.6 89.3
Order 7 75.6 79.4 79.2 79.1 80.1 81.1 79.4 86.1 86.8 88.7
Order 8 73.4 76.7 79.9 79.7 79.8 80.5 78.6 84.8 86.7 88.7
Order 9 36.2 39.3 41.0 51.3 53.8 69.5 67.0 81.4 83.6 85.5

Order 10 46.5 52.4 51.6 52.2 51.2 74.2 72.0 80.5 82.5 84.5
Avg. 65.9 69.4 66.2 69.1 69.6 77.2 75.3 83.5 85.7 87.5



Table 5. Comparison of the performance on the DomainNet dataset for different state-of-the-art methods in TDA, TDG, FA, and All. The
results are presented for each domain order. The results of the baseline models are referenced from [3]. The best results are highlighted in
bold.

Metric Orders SHOT SHOT++ Tent AdaCon EATA L2D PDEN RaTP CoDAG Ours

TDA

Order 1 68.4 70.5 59.0 60.4 60.0 59.9 60.8 68.6 70.3 72.7
Order 2 69.7 66.2 28.9 66.2 65.8 56.5 54.2 72.0 74.7 76.8
Order 3 72.6 73.4 65.6 68.6 69.4 54.8 52.7 66.1 74.3 76.3
Order 4 51.3 53.5 54.6 52.2 52.9 57.3 55.2 61.7 67.0 69.7
Order 5 68.5 70.9 60.3 60.3 58.7 56.9 55.7 64.4 74.4 77.1
Order 6 63.1 65.3 51.8 52.4 55.0 49.3 50.2 56.3 63.2 65.9
Order 7 47.7 48.1 50.0 50.8 51.7 41.7 40.4 58.0 59.2 61.8
Order 8 72.8 73.2 67.6 71.6 70.7 64.0 63.4 67.4 76.4 79.9
Order 9 74.2 75.9 67.6 71.3 69.3 61.9 62.2 72.5 76.4 78.1

Order 10 71.9 72.1 31.0 67.9 71.2 59.9 61.0 66.9 74.2 76.5
Avg. 66.0 66.9 53.6 62.2 62.5 56.2 55.6 65.4 71.0 73.5

TDG

Order 1 46.9 45.5 52.1 51.3 51.2 49.6 48.0 53.3 54.0 56.9
Order 2 52.2 50.0 31.0 52.7 55.2 55.6 51.2 57.6 58.1 60.0
Order 3 53.6 53.3 58.4 53.7 58.7 52.8 51.1 57.5 60.2 63.1
Order 4 40.8 41.9 50.6 51.3 51.1 48.2 47.0 55.8 57.7 60.2
Order 5 48.4 49.6 52.8 53.0 52.8 53.1 51.0 54.2 56.0 60.0
Order 6 34.0 35.3 33.1 32.9 33.6 36.5 37.2 41.8 43.5 45.9
Order 7 23.2 25.7 35.4 32.9 34.4 32.2 30.2 42.5 42.6 45.5
Order 8 59.2 59.9 61.0 62.0 62.0 62.1 61.4 63.2 62.7 64.7
Order 9 58.7 59.3 61.3 61.6 63.3 59.4 59.9 63.8 63.5 66.0

Order 10 56.2 60.1 41.2 61.3 59.0 57.4 56.4 62.3 63.2 66.1
Avg. 47.3 48.1 47.7 51.3 52.1 50.7 49.3 55.2 56.2 58.8

FA

Order 1 61.4 66.5 67.4 67.0 64.3 63.7 61.1 67.5 70.9 73.5
Order 2 64.5 68.9 34.1 62.6 65.8 48.9 46.3 70.4 74.3 76.6
Order 3 62.9 67.7 65.6 66.3 69.2 45.2 43.1 64.7 72.9 75.3
Order 4 42.1 65.4 56.4 53.3 52.7 41.5 39.5 57.1 66.4 69.6
Order 5 60.9 68.5 58.0 56.6 57.4 51.2 48.6 62.0 72.4 74.7
Order 6 61.1 66.3 52.4 49.4 54.8 48.0 46.0 53.8 63.6 67.9
Order 7 42.8 51.7 48.5 48.5 47.7 37.2 36.0 55.0 57.5 60.1
Order 8 61.6 67.5 71.6 72.8 73.5 58.8 55.1 63.1 74.9 75.6
Order 9 67.4 77.3 76.8 76.1 76.0 66.5 65.6 76.3 82.8 84.9

Order 10 60.4 69.6 30.4 65.5 66.3 61.4 60.9 64.6 72.9 76.0
Avg. 58.5 66.9 56.1 61.8 62.8 52.2 50.2 63.5 70.9 73.4

ALL

Order 1 58.9 60.8 59.5 59.6 58.5 57.7 56.6 63.1 65.1 67.7
Order 2 62.1 61.7 31.3 60.5 62.3 53.7 50.6 66.7 69.0 71.1
Order 3 63.0 64.8 63.2 62.9 65.8 50.9 49.0 62.8 69.1 71.6
Order 4 44.7 53.6 53.9 52.3 52.2 49.0 47.2 58.2 63.7 66.5
Order 5 59.3 63.0 57.0 56.6 56.3 53.7 51.8 60.2 67.6 70.6
Order 6 52.7 55.6 45.8 44.9 47.8 44.6 44.5 50.6 56.8 59.9
Order 7 37.9 41.8 44.6 44.1 44.6 37.0 35.5 51.8 53.1 55.8
Order 8 64.5 66.9 66.7 68.8 68.7 61.6 60.0 64.6 71.3 73.4
Order 9 66.8 70.8 68.6 69.7 69.5 62.6 62.6 70.9 74.2 76.3

Order 10 62.8 67.3 34.2 64.9 65.5 59.6 59.4 64.6 70.1 72.9
Avg. 57.3 60.6 52.5 58.4 59.1 53.0 51.7 61.4 66.0 68.6
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