
A. Continuous Multi-Embodiment Tokenizer
Details

As stated in Section 4.2, we train a Residual VQ-VAE
(RVQ) model to convert continuous actions from diverse
robot embodiments into a shared discrete token space. In
our experiments, we use 2 codebooks, each with 512 to-
kens, and the token vector dimension is 1024. Actions are
encoded into these latent codebooks via a 4-layer MLP with
4096 hidden dimensions per layer. The decoder uses the
same MLP architecture but now inputs the 1024-dimension
latent and outputs the padded action. Refer to Lee et al.
[40] for further details about the RVQ method. We map
these 512 tokens for both of the 2 codebooks to tokens
30000→ 30512 of the LLM vocabulary. Since these tokens
are non-English tokens for all the LLMs we consider and all
our tasks use English instructions, we use this same token
range for all MLLM experiments. All actions are padded to
be 21 dimensions during tokenization. During detokeniza-
tion, the 21 dimension continuous vector is truncated from
the right to fit the expected action dimension for the envi-
ronment.

The RVQ tokenizer is trained with MSE loss using all
datasets with continuous actions from the overall set of
datasets used to train GEA described in Appendix D. The
commitment loss from the RVQ is weighted by 1.0 relative
to the MSE loss. The tokenizer is trained with a per-GPU
batch size of 256 across 8 H100 GPUs. The model is then
trained for 15k updates using the AdamW optimizer [53]
with a cosine learning rate decaying to 0 at the end of train-
ing and a linear learning rate warmup schedule for the first
10% of training. At this number of updates, the valida-
tion MSE loss on unseen actions had largely plateaued at
↑ 0.0038 averaged across all datasets and 0.002 → 0.007
depending on the dataset. This trained RVQ tokenizer was
then used to train and evaluate all models with continuous
actions.

B. SFT Training Additional Details

To limit the number of tokens per frame to be processed
by the LLM, we use the “video” encoding strategy from
LLaVA-OneVision. This does not use the AnyRes tech-
nique and also applies bilinear interpolation to reduce the
number of tokens per image. This results in 196 tokens
for each image after being processed by the visual encoder
and downsampled. For the training sequence format de-
scribed in Section 3.2, we use the following prompt format
where per-domain strings are manually defined and substi-
tuted into each bracketed statement.

User:
Agent: <agent description>.
Actions:

Simulator: <simulation platform>
Camera: <camera details>
Instruction: <task instruction>

Agent:

When forming training batches, we randomly sample trajec-
tories, and then randomly sample a span of the appropriate
context length from that trajectory, and then use the sam-
pled span of observation and actions as an element of the
data batch. In the case of the interactive data, the model
is only trained to predict the action tokens; the loss for the
prompt, instruction, and image tokens is masked out.

For the details about the datasets used in this training
process, see Appendix D.

C. RL Training Additional Details
In this section, we list additional RL training details omitted
from Section 4.4. The value function is a 4-layer MLP with
a hidden dimension of 2048. The value function takes as
input a single vector from the mean-pooled visual tokens
from the visual encoder, the final activation of the LLM for
the observation, and any task-specific state information that
is available. For LoRA finetuning, we use a value of r =
128,ω = 32, and a dropout value of 0.1. We use GAE
return estimation with ε = 0.95 and a discount factor of
ϑ = 0.999.

We run RL with the Habitat Pick, LangR, and Procgen
environments. Each GPU runs a different benchmark in-
stance. Both Habitat Pick and Procgen are allocated to run
on 50% more GPUs than LangR because we found that
LangR learns much faster with RL compared to the other
tasks. Per benchmark variation, such as different episodes
in Habitat Pick and different games in Procgen, are equally
divided between the GPUs assigned to that benchmark. On
each GPU, a parallelized set of 6 environments are running
for batched environment experience collection. We update
with 2 PPO epochs, 6 minibatches per epoch, and a clip pa-
rameter of 0.2. We also use the AdamW optimizer for RL
training but without any learning rate schedule. We now
detail the RL considerations specific to each environment.

In Habitat Pick, we use the same environment details as
from prior works using the same task [26, 79, 81]. The task
requires the agent to pick up a target object specified by
name. Specifically, the agent starts within 2 meters of the
target object and faces towards the receptacle the target ob-
ject is on but with random noise N (0, 1.57) applied to the
direction of facing directly at the receptacle. The task ends
in failure if the agent excessively collides with the scene,
drops the object, or picks up the wrong object. The maxi-
mum number of steps per episode is 300 steps. We use the
same reward as the RL-trained pick skill from Szot et al.
[78] where a dense reward is provided for moving the end-



effector closer to the object, a positive bonus for picking up
the object, and then negative penalties for collisions. We
use the 50k training episodes from Szot et al. [79]. Note
that these training episodes used for RL training are dis-
tinct from the episodes used for testing, which are in unseen
house layouts.

For the LangR environment, we use the RL environment
details from Szot et al. [80]. The reward function for this en-
vironment involves a sparse reward for completing the task,
subgoal rewards for completing individual parts of the task,
and a slack penalty to encourage completing the task faster.
This environment has a maximum of 32 steps per task. In
LangR, memory is important because the agent must ex-
plore to find certain objects. We therefore increased the
number of visual observations in the context to 16 for the
LangR RL training. We achieve this by increasing the vi-
sual encoder bilinear interpolation factor to produce only
32 visual tokens per image observation. Implementing such
environment-specific policy tweaks is simpler in the RL
training phase because each GPU worker runs a distinct en-
vironment.

For Procgen, we use the RL environment details from
Cobbe et al. [15]. Importantly, we train over all 16 of the
Procgen games at once using RL. We use the standard per-
game reward functions.

D. Dataset Details
MetaWorld: We use the Metaworld simulator [99] with the
pre-defined MT-45 split, which consists of 45 training table-
top manipulation tasks using a Sawyer XYZ arm. Each of
the 45 tasks has a language instruction associated to it, e.g.
”Open the drawer”, which we use in all experiments. As in-
puts to the generalist agent, we use RGB observations from
the corner3 camera resized to GEA resolution. We use
no proprioceptive information.

The dataset consists of 500 trajectories from each of the
45 train tasks. To construct the train, validation and test
datasets, we rollout the scripted expert policy 10 times for
each task’s starting state until the first success, to obtain
sufficient data diversity. We then assign some of the starting
states from the 45 training tasks to the validation set and the
remaining trajectories to the training dataset.

Atari: We use the DQN replay dataset [2], which con-
sists of 50 million transitions collected while training the
DQN [61] algorithm on each of the 44 environments sep-
arately. Based on the findings of Multi-Game Decision
Transformer [41], we construct the SFT training dataset to
be the top-10% of the DQN replay data by trajectory re-
turns, over 5 random seeds and 50 splits. We do not use
100% of the data since it is suboptimal to include low-return
trajectories in the SFT dataset. However, if one would like
to run offline RL on the data, they should include all of the
available data.

BabyAI: This dataset consists of 50k trajectories split
equally between each of the BabyAI tasks from Chevalier-
Boisvert et al. [14]. These trajectories are collected by
the shortest path expert provided in the code release for
Chevalier-Boisvert et al. [14]. The observations are top-
down RGB renderings of the image at 336↓336 resolution.

Procgen: We use the training datasets across all Proc-
gen games provided from Mediratta et al. [59]. This dataset
consists of 10M observation-action transitions between all
the games collected by a PPO expert policy that was indi-
vidually trained on each game. These transitions amount to
around 320k trajectories.

CALVIN: We use the standard CALVIN ABC ↔ D
dataset provided by Mees et al. [60], which are language-
labeled task instructions collected by human teleoperation
of the robot. This dataset consists of around 18k demonstra-
tions. The observations are 200↓200 RGB renderings from
the robot head camera. Note that unlike prior work [48], we
do not use the gripper camera or any robot proprioception
from this dataset. The actions in the dataset are 6D end-
effector control for the relative orientation and position and
the gripper state.

LangR: For this work, we collect 150k demonstrations
for each of the 150k unique training episodes defined by
Szot et al. [80]. We collect this data by utilizing the RL-
trained policy from [80]. This policy achieves high perfor-
mance on the training set of instructions (around 98% suc-
cess rate), and we collect 1 successful demonstration per
training episode. The observations are 336↓ 336 RGB im-
ages from the robot head camera. The actions are between
70 high-level skills that include picking up objects by name,
navigating to receptacles, placing on receptacles by name,
and opening and closing receptacles by name.

Habitat Pick/Place: We collect 50k demonstrations for
each of these tasks via an expert policy trained with RL.
We use the same setup as from the skill training in Szot
et al. [78] but operate from an object class to pickup rather
than the original geometric goal task specification. This ex-
pert policy was trained with the ground truth simulator state,
consisting of the relative position of the target object to the
robot’s end-effector. The expert is trained for 100M steps
until convergence. The performance of both experts on the
unseen episodes are displayed in Table 2 as baselines.

For the online learning experiments from Section 6.2, we
construct the training dataset as follows. We use the GEA-
Base checkpoint to collect 10,000 trajectories with action
sampling to allow for suboptimal trajectories to be added
to the data. The rollouts policy has a success rate of about
50%, meaning that half of the trajectories can be used for
SFT from successful trajectories, and all of them can be
used for offline RL. When training the SFT policy, we re-
strict the loss to be optimized only over successful trajecto-
ries, as SFT cannot learn from suboptimal data. In addition



to observations and actions, we also log the reward values
which are required for offline RL.

Habitat Nav: We collect 13k shortest path demonstra-
tions of an agent navigating to receptacles by name in the
house. The navigation is performed by an oracle shortest
path agent.

Maniskill: These datasets are from the released im-
itation learning datasets from Gu et al. [22]. They are
generated via a motion planning algorithm. We only uti-
lize the RGB 3rd-person RGB camera. We generate data
for the “StackCube”, “PegInsertionSide”, “PlugCharger”,
“PushCube”, and “PickCube” tasks. The dataset from Gu
et al. [22] has 1k demonstrations for each of these tasks.

Android Control: This is the dataset from Li et al. [47]
consisting of 14k human demonstrations of using apps to
accomplish UI control tasks. Each trajectory has a unique
language instruction. The data spans 833 apps. The original
images are 1080↓1920, corresponding to the phone screen
size. Since we do not use any AnyRes techniques in the
MLLM visual encoder, we resize the images to be square
before inputting them into the MLLM visual encoder. Us-
ing AnyRes with image crops to account for these image
aspect ratios could improve the performance of GEA. Ac-
tions are generally represented as the name of the action
type (like “tap”, “scroll”, or “input text”) followed by the
argument for that action where applicable. For tap action ar-
guments, we discretize the original 1080↓1920 screen into
50 ↓ 50 patches. A tap action argument is represented as
two integers representing the horizontal and vertical patch
coordinates where the tap occurred on the screen. All these
actions are represented as textual tokens and are separate
from the continuous action tokens.

OpenX: The Open X-Embodiment dataset consists of
numerous individual datasets spanning different robots.
We include the following individual datasets from OpenX:
Austin Buds dataset, Austin Sailor dataset, Austin Sir-
ius dataset, Berkeley Cable Routing, CMU Stretch, DLR
EDAN Shared Control, Fractal, IAMLab CMU Pickup In-
sert, Jaco Play, Kuka, UCSD Kitchen Dataset, UTAustin
Mutex, Dobbe, FMB, RoboSet and Spoc.

Vision language instruction data: We use the datasets
described in Section 5.

When sampling batches for any SFT training, we weight
each dataset defined in Table 1 equally, except OpenX is up-
sampled 2x, Procgen 2x, and all the VQA data is upsampled
3x.

E. Evaluation Details
Overall, we use the standard evaluation settings per environ-
ment as defined by the prior work. We detail the evaluation
settings for each environment below:

MetaWorld: We evaluate the generalization perfor-
mance of our agent on Metaworld unseen starting states

over 5 episodes each, totaling to 450 evaluation trajectories
in total. We use the simulator’s notion of success to define
the success rate.

Atari: We evaluate the in-distribution performance
of our model on 44 Atari games, by using the same
setup as the DQN replay dataset, which in turn relies on
the Dopamine [12] framework. Specifically, we use the
{GameID}NoFramskip-v4 version of the ALE simula-
tor [6]. We conduct 10 rollouts over all 44 Atari games
and average their respective human-normalized scores. The
human-normalized scores follow the same protocol as [41,
69]:

scorenormalized(s) =
|s→ scorerandom|

scorehuman → scorerandom

Through our experiments, we have found that GEA-Base
performs better according to the human-normalized average
score than GEA (40.3 vs 32.71). The result is not surpris-
ing, as we do not perform any Atari online RL finetuning
on the GEA-Base model, and hence, performance can de-
grade at the expense of much better performance on Habitat
Pick and Procgen. To solve this issue, one should co-train
on all tasks that support fast online simulation. However,
since Atari is structurally similar to Procgen, and Procgen
supports procedural level generation to test generalization,
we choose not to perform online RL finetuning on Atari.

BabyAI: We evaluate each task from Chevalier-Boisvert
et al. [14] and evaluate over 100 random episodes for each
of the 17 tasks, resulting in 1700 total episodes for the num-
bers reported in Table 2. Each episode has a different envi-
ronment state and new language instruction.

Procgen: We follow the test evaluation setting Medi-
ratta et al. [59] which uses the “easy” mode setting of the
game. We evaluate 50 episodes for each of the 16 games.
Like Atari, the performance is evaluated in Procgen via the
min-max normalized per-game scores from a random policy
and the a PPO expert policy using the reported scores from
Cobbe et al. [15].

CALVIN: We use the ABC ↔ D evaluation setting.
This means that during our evaluation, the table background
and the language instructions are unseen. We report results
over the full 1k evaluation episodes defined by Mees et al.
[60].

LangR: We follow the standard evaluation settings from
Szot et al. [78]. Like the original work, our numbers are
reported over the 9 unseen language instruction splits. We
evaluate in 100 episodes for each of the 9 evaluation splits.
Each test episode is also in an unseen house layout.

Habitat Pick/Place/Nav: We follow the evaluation split
and settings from Szot et al. [78] and evaluate the agent for
500 episodes in unseen house layouts. This version of the
task where the agent has to operate from a language instruc-
tion of which object to pick is a harder version of the orig-



inal geometric goal task and has been employed by prior
works [26, 81].

Maniskill: We use the standard evaluation settings from
Gu et al. [22]. Aligning with the generated dataset for Man-
iskill, we evaluate in the “StackCube”, “PegInsertionSide”,
“PlugCharger”, “PushCube”, and “PickCube” tasks. Each
of the 5 tasks are evaluated for 100 episodes each.

Android Control: We evaluate on the full 1,540 test
episodes from Li et al. [47]. We measure the per-step suc-
cess rate, meaning the percent of the time the agent predicts
the right action based on the ground truth test episode. This
is distinct from the episode level success rate which requires
the agent to predict every action in the trajectory correctly.
We report the success rate under the more challenging set-
ting of following high-level instructions only, without per-
step low-level instructions. We consider an action as pre-
dicted correctly if it is within 5 of the horizontal and vertical
patches defined in the dataset generation from Appendix D.
Any entered text is considered correct if the correct text is
contained in the entered text or the entered text is contained
in the correct text.

F. Further Experimental Details
F.1. Additional Baseline Details
For each benchmark, to the best of our knowledge, we re-
port the method from prior work with the highest perfor-
mance. In this section, we add more details about these
baselines from prior works in Table 2 and any differences in
the evaluation settings and method assumptions from GEA.
We source methods from prior work that train a single pol-
icy over all tasks in a benchmark. We consider methods
that only train on tasks from a single benchmark as “spe-
cialist” and methods that train across multiple benchmarks
as “generalist”. Note that this means we do not compare
against methods that train policies on individual tasks from
the benchmark. For example, in Procgen, we do not com-
pare to the performance of Cobbe et al. [15] since a separate
policy is trained for each of the 16 tasks. Instead, we only
compare to methods that train a single policy across multi-
ple tasks.

Meta-World: Many prior works report performance on
the Meta-World benchmark [24], but fewer works train and
evaluate over the full set of 45 tasks. Gato [69] trains over
all the Meta-World tasks and reports an average perfor-
mance of 87.0% success rate. 1 Unlike GEA, Gato also
takes as input the proprioceptive state in Meta-World. Reed
et al. [69] also does not clarify if the Meta-World evaluation
is performed over unseen state configurations or using the
same states seen during training. GEA is evaluated on un-
seen state configurations. The GEA Meta-World numbers

1We reference the Gato numbers from Table 8 of the TMLR paper ver-
sion: https://openreview.net/pdf?id=1ikK0kHjvj

are reported in the same setting as Szot et al. [81] with the
same inputs.

CALVIN: To the best of our knowledge, there are no
generalist agents that report the performance on CALVIN
in addition to other benchmarks. RoboFlamingo [48] also
adapts an MLLM for control by finetuning it with super-
vised learning. We include this specialist agent since it
also leverages finetuning MLLMs, to demonstrate the gains
from scaling to a generalist model with GEA. Compared to
GEA, RoboFlamingo uses the gripper camera, image aug-
mentations during training and a longer context length. 3D
Diffuser Actor [35] is the state-of-the-art specialist system
for CALVIN ABC ↔ D setting and narrowly outperforms
GEA. However, as mentioned in the main text, 3D Diffuser
Actor also assumes input to 3D pointclouds features. This
method uses the head and gripper RGBD cameras to ex-
tra pointclouds of the scene. These pointclouds are then
converted into a 3D feature cloud using a pretrained CLIP
model. This method also simplifies the problem by com-
pressing longer sequences of actions into end-effector key-
poses.

Maniskill: We compare to the numbers using RGBD in
Table 2 and 3 of Gu et al. [22]. Unlike these numbers, GEA
uses only RGB inputs and no depth images. These results
train a single policy per-task which is technically narrower
than our definition of “Specialist Agent” which requires
training one policy on all tasks from the benchmark. How-
ever, we still include these baselines to situate our Maniskill
results. GEA outperforms doing imitation learning with the
exact same demonstrations as from Table 2 of Gu et al. [22].
The superior results of 47.8% success are from Table 3 of
Gu et al. [22], which train with DAPG [67] and PPO. GEA
does not train with RL in this task. Hansen et al. [25] re-
ports higher success rates in Maniskill2 tasks, but uses the
ground truth state information instead of visual observations
and trains a single policy per individual Maniskill2.

Habitat Pick: Other methods that report performance
on the version of the Habitat Pick task that requires pick-
ing from the object name typically achieve low success
rates [26, 81, 96]. We thus also compare to the expert policy
that was used to generate the Habitat Pick training dataset
as described in Appendix D. Note that this expert policy
was not trained in the evaluation scenes and thus also must
generalize to unseen scenes. This expert policy has perfor-
mance on par with pick skills trained in Habitat that oper-
ates from the much stronger assumption of a geometric goal
input [78]. The specialist numbers from [81] also finetune
a MLLM with imitation learning and are evaluated in the
exact same setting as GEA.

Habitat Place: We follow the same evaluation criteria as
Habitat Pick and compare to the expert policy trained with
RL that was used to generate the expert demonstrations as
described in Appendix D.



(a) Validation Loss (GEA-Base-500m).

HabPick Procgen CALVIN BabyAI Meta-
World

Android
Control

Seed 0 46.5 29.0 44.5 82.6 82.7 48.4
Seed 1 49.0 25.4 42.5 80.0 86.7 50.1
Seed 2 53.0 27.3 44.5 82.4 88.4 49.2

Combined 49.5 ± 3.3 27.2 ± 1.8 43.8 ± 1.2 81.7 ± 1.5 85.9 ± 3.0 49.2 ± 0.8

(b) Evaluation success rates (GEA-Base-500m).

Figure 6. Variance in training jobs and evaluation for GEA. We train three different random seeds for GEA-Base-500m. The left shows the
validation loss during SFT is similar between each random seed. The right shows the resulting online evaluation for these three random
seeds across six of the benchmarks, along with the combined averages and standard deviation per benchmark. While the standard deviation
is low, it is still a couple of percent on some benchmarks despite the validation loss being very similar.

Procgen: We compare against the BC test numbers
from Figure 2 of Mediratta et al. [59], which use the same
datasets as our setup. While Gato [69] also reports num-
bers in Procgen, we are not able to compare to these num-
bers because Gato reports performance relative to unknown
score of the data collection policy. To the best of our knowl-
edge the score of the data collection policy is not released.
Thus, it is unclear how the Gato Procgen performance is
normalized according to the standard Procgen normaliza-
tion scores [15] rendering a direct comparison impossible.

Atari: For a generalist system, we compare with
Gato [69] which as Table 8 shows of Reed et al. [69]
shows, achieves 30.9 normalized score. Multi-Game De-
cision Transformers [41] achieves 85 normalized score in
the same scoring setting. This method was trained with of-
fline RL based on conditioning the training on the reward-
to-go [13].

Habitat Nav: We compare against the success rate of
the navigation policy from Szot et al. [78]. This policy is
trained with RL on the same training set of episodes and
evaluated on the same testing set of episodes as GEA. How-
ever, this policy operates on the geometric goal specification
of the receptacle rather than the receptacle name. Addition-
ally, this policy also takes an egomotion sensor as input,
whereas GEA does not, simplifying the problem.

BabyAI: We compare against Gato [69] which as Ta-
ble 8 in Reed et al. [69] shows, achieves 93.2 normalized
score. While Reed et al. [69] does not clarify this detail,
presumably the normalization is with respect to a perfect
expert policy, so the normalized score is equal to the suc-
cess rate. Gato trains with far more data than GEA with
4.61M episodes.

AndroidControl: We compare against using a Set-of-
Mark prompting with GPT-4o. The Set-of-Mark was imple-
mented using the Ferret-UI model [49] for UI element de-
tection to generate the marks with GPT-4o to determine the
action. GEA and this baseline are evaluated under the same

success criteria. We do not compare to the numbers from
the original AndroidControl paper [47] since it uses differ-
ent evaluation criteria from ours described in Appendix E
and the code for the evaluation in Li et al. [47] is not publi-
cally released.

LangR: We compare against the state-of-the-art num-
bers from Szot et al. [81]. This method was trained with RL
over the same set of training episodes as GEA.

F.2. Ablation Analysis Setting
For the analysis experiments, we used a reduced subset
of the total dataset. Specifically, we use the Meta-World,
CALVIN, Habitat Pick, BabyAI, Procgen, and Android-
Control datasets. Datasets from the other domains are ex-
cluded.

When training methods in the analysis setting, we keep
all the same settings as from the main GEA experiments
with the hyperparameters described in Appendix B. How-
ever, we reduce the number of updates to 40k and use a
global batch size of 256 across 2 nodes of 8 H100 GPUs
each. All results in the analysis section are reported in
the LLaVA-OneVision-500m setting unless specified oth-
erwise.

G. Further Results
G.1. Benchmark Per-Task Success Rate
We breakdown the performance of the GEA model reported
in Table 2 per individual task for the benchmarks of Meta-
World (Table 5), CALVIN (Table 6), Procgen (Table 7),
Maniskill (Table 8), LangR (Table 9), and BabyAI (Ta-
ble 10).

G.2. Habitat Pick RL Finetuning
Complimenting the results demonstrating the value of on-
line learning from Figure 4, in this section, we compare the
RL sample efficiency of GEA-Base versus the base MLLM.



Figure 7 shows that doing RL from the GEA-Base model is
far more sample efficient and converges to much higher per-
formance than doing RL on the MLLM model. The GEA-
Base model is trained with SFT on demonstrations from the
Habitat Pick task, so it is expected that its performance will
start higher. However, the MLLM model is never able to
make up for the performance gap, even with continued RL
finetuning.

Figure 7. Success rate on the Habitat Pick task of GEA-Base and
the base MLLM when finetuning with online RL. Displayed are
success rates on the training dataset used in the RL process.

G.3. Model Variance Analysis
In this section, we analyze the sensitivity of training GEA-
Base-500m with different random seeds. Specifically, we
vary the random seed used to initialize the model, all as-
pects of the algorithm, and dataset sampling. We then train
the GEA-Base-500m model in the analysis setting from Ap-
pendix F.2. The results in Figure 6 demonstrate that while
the training and validation curves are very similar. The on-
line evaluation performance of GEA-Base-500m does have
some variance per random seed within a couple of percent-
age points.

G.4. Domain Transfer Analysis
In Figure 8 we study how performance transfers between
domains by training the GEA-Base-500m model on every
possible pair of datasets from BabyAI, CALVIN, Habitat
Pick, Android Control and Procgen. We train the model in
the same analysis setting as from Appendix F.2. We com-
pare the performance of the dataset pair to only training on
one of the datasets (the same as the “Domain Specific” re-
sults from Table 4). The results in Figure 8, with more blue
colors for negative transfer and more red colors for posi-
tive transfer, show that some domains such as Procgen and
CALVIN enormously benefit from data in other domains.
Android Control slightly benefits from Procgen, another
discrete control task. On the other hand, Habitat Pick and
BabyAI have negative transfer from a variety of tasks. De-

spite this negative transfer, Table 4 still demonstrates that
training on all the data across all these domains improves
the performance.

Figure 8. Each square represents the success rate of GEA-Base-
500m trained with the datasets from the two domains indicated by
the column and row name and evaluated on the domain indicated
by the column. Success rates are scaled by training on only data
from that domain, meaning each column is normalized relative to
the diagonal. A more blue color means negative transfer and a
more red color means positive transfer.



GEA
assembly 86.0
basketball 100.0

button-press-topdown 100.0
button-press-topdown-wall 100.0

button-press 100.0
button-press-wall 92.0

coffee-button 100.0
coffee-pull 100.0
coffee-push 100.0

dial-turn 100.0
disassemble 88.0
door-close 100.0
door-open 100.0

drawer-close 100.0
drawer-open 100.0
faucet-open 100.0
faucet-close 100.0

hammer 100.0
handle-press-side 100.0

handle-press 100.0
handle-pull-side 80.0

handle-pull 100.0
lever-pull 80.0

peg-insert-side 100.0
peg-unplug-side 98.0
pick-out-of-hole 60.0

pick-place 92.0
pick-place-wall 82.0

plate-slide 100.0
plate-slide-side 96.0
plate-slide-back 100.0

plate-slide-back-side 100.0
push-back 90.0

push 100.0
push-wall 100.0

reach 60.0
reach-wall 94.0
shelf-place 98.0

soccer 76.0
stick-push 100.0
stick-pull 98.0

sweep-into 90.0
sweep 100.0

window-open 100.0
window-close 100.0

Table 5. Meta-World per-task success rate breakdown.

GEA
turn off led 87.0

move slider left 100.0
rotate red block right 69.0

open drawer 100.0
rotate red block left 95.5

push pink block right 100.0
push blue block right 65.2

push red block left 85.7
push pink block left 87.1
push red block right 31.0
push blue block left 88.6

push into drawer 86.7
rotate pink block left 100.0

turn on lightbulb 97.6
rotate pink block right 93.5
rotate blue block right 78.6

turn off lightbulb 97.1
lift blue block table 100.0

close drawer 100.0
rotate blue block left 95.8

move slider right 95.4
turn on led 96.4

lift blue block slider 63.3
lift pink block table 100.0
lift red block slider 73.1
lift red block table 83.3

lift pink block slider 96.0

Table 6. CALVIN per-task success rate breakdown. Note the tasks
are not equally represented in the evaluation episodes.

GEA
bigfish 43.1

bossfight 54.2
caveflyer 27.7

chaser 54.0
coinrun 66.0

dodgeball 3.4
fruitbot 84.8

heist 32.0
leaper 26.0
maze 58.0
miner 27.0

climber 46.2
ninja 62.0

plunder 4.5
jumper 50.0

Table 7. Procgen per-game score breakdown.



GEA
StackCube 4.0

PegInsertionSide 0.0
PlugCharger 0.0
PushCube 52.0
PickCube 12.0

Table 8. Maniskill per-task score breakdown.

GEA
rephrasing 84.0

referring expressions 16.0
spatial relationships 0.0

context 34.0
irrelevant text 86.0

multiple rearrangements 82.0
novel objects 96.0

multiple objects 0.0
conditional instructions 52.0

Table 9. LangR per-task score breakdown.

GEA
GoToRedBallGrey 88.0

GoToRedBall 97.0
GoToRedBallNoDists 100.0

GoToObj 100.0
GoToObjS4 100.0

GoToLocalS8N7 93.0
GoToRedBlueBall 92.0

GoToDoor 100.0
Open 76.0

OpenRedDoor 100.0
OpenDoorColor 100.0
OpenDoorLoc 80.0

OpenTwoDoors 100.0
OpenRedBlueDoors 100.0

Pickup 41.0
PickupLoc 88.0
PickupDist 94.0

Table 10. BabyAI per-task score breakdown.

GEA
Alien 6.1

Amidar 0.0
Assault 86.5
Asterix 2.3
Atlantis 0.0

BankHeist 8.9
BattleZone 39.2
BeamRider 3.1

Boxing 0.0
Breakout 0.0
Centipede 50.0

ChopperCommand 30.2
CrazyClimber 0.0
DemonAttack 20.8
DoubleDunk 300.0

Enduro 0.0
FishingDerby 0.0

Freeway 81.1
Frostbite 2.7
Gopher 0.0
Gravitar 0.0

Hero 0.0
IceHockey 0.0
Jamesbond 0.0
Kangaroo 38.5

Krull 373.0
KungFuMaster 0.0

MsPacman 27.9
NameThisGame 0.0

Phoenix 0.0
Pong 0.0
Qbert 0.6

Riverraid 0.0
RoadRunner 33.0

Robotank 307.2
Seaquest 0.3

SpaceInvaders 52.7
StarGunner 1.4
TimePilot 0.0
UpNDown 0.0

VideoPinball 0.0
WizardOfWor 0.0
YarsRevenge 0.0

Zaxxon 0.0

Table 11. Atari success rate breakdown.


	Introduction
	Related Work
	Generalist Embodied Agent
	Problem Settings
	GEA Architecture

	Training
	Base MLLM
	Continuous Multi-Embodiment Tokenizer
	Stage 1: Supervised-Instruction Finetuning
	Stage 2: Online Reinforcement Learning

	Datasets and Environments
	Empirical Evaluation
	GEA Generalization Capabilities
	GEA Training and Model Analysis

	Conclusion
	Continuous Multi-Embodiment Tokenizer Details
	SFT Training Additional Details
	RL Training Additional Details
	Dataset Details
	Evaluation Details
	Further Experimental Details
	Additional Baseline Details
	Ablation Analysis Setting

	Further Results
	Benchmark Per-Task Success Rate
	Habitat Pick RL Finetuning
	Model Variance Analysis
	Domain Transfer Analysis


