
Low-Rank Adaptation in Multilinear Operator Networks for
Security-Preserving Incremental Learning

Supplementary Material

A. Proofs
Proposition 1 (Restatement of Proposition 1). Fine-tuning
Bt is equivalent to fine-tuning the pre-trained weight Wt−1

within the subspace span{at,1, . . . , at,r}, where at,i (1 ≤
i ≤ r) denotes the i-th row vector of At. This equivalence
holds when learning the t-th task with forward propagation
represented by:

 z = W_{t-1} x + \alpha _{\mathrm {lora}} B_t A_t x. \label {eq:branching_forward_proposition_Xs} (8)

Here, all symbols have the same meaning as in Sec. 4.

Proof of Proposition 1. We have the weight of the concate-
nated channel projection of the first (t−1) tasks before task
t-th and the weight of pre-trained channel projection repre-
sented by a matrix Wt−1 ∈ Ro×c and W ∈ Ro×c, respec-
tively, the input tensor x ∈ Rc×h×w. Then, z ∈ Ro×h×w.
With i, j ∈ N, 1 ≤ i ≤ h, 1 ≤ j ≤ w, the pixel-wise
feature vector zi,j of the tensor z is calculated as:

 z_{i,j} = W_{t - 1} x_{i, j} + \alpha _{\text {lora}} B_t A_t x_{i, j} (9)

where xi,j is the corresponding pixel-wise feature vector of
the tensor x. With L as the loss function, the gradient of L
with respect to the weight matrix Wt is as follows:

 \frac {\partial \mathcal {L}}{\partial W} &= \sum _{i, j \in \mathbb {N}, \; 1 \leq i \leq h, \; 1 \leq j \leq w} \frac {\partial \mathcal {L}}{\partial z_{i, j}} \cdot \frac {\partial z_{i, j}}{\partial W} \\ &= \sum _{i, j \in \mathbb {N}, \; 1 \leq i \leq h, \; 1 \leq j \leq w} \frac {\partial \mathcal {L}}{\partial z_{i, j}} \cdot x_{i, j}^\top

 (11)

We will now compute the gradient of L with respect to
the weight matrix Bt:

 \frac {\partial \mathcal {L}}{\partial B_t} &= \sum _{1 \leq i \leq h, \; 1 \leq j \leq w} \frac {\partial \mathcal {L}}{\partial z_{i, j}} \cdot \frac {\partial z_{i, j}}{\partial B_t} \\ &= \sum _{ 1 \leq i \leq h, \; 1 \leq j \leq w} \frac {\partial \mathcal {L}}{\partial z_{i, j}} \cdot x_{i, j}^\top A_t^\top \\ &= \left (\sum _{ 1 \leq i \leq h, \; 1 \leq j \leq w} \frac {\partial \mathcal {L}}{\partial z_{i, j}} \cdot x_{i, j}^\top \right) A_t^\top \\ &= \frac {\partial \mathcal {L}}{\partial W_t} A_t^\top

 (15)

Then, the changes in Wt with respect to a change in Bt

is as follows:

 \Delta _{B_t} W_t &= [W_{t-1} + \alpha _{\text {lora}} (B_t + \Delta B_t) A_t] \\ &\qquad - (W_{t-1} + \alpha _{\text {lora}} B_t A_t) \\ &= \alpha _{\text {lora}} \Delta B_t A_t \\ &= -\alpha \alpha _{\text {lora}}\frac {\partial \mathcal {L}}{\partial B_t} A_t \;\;(\alpha \text { is the step size}) \\ &= -\alpha \alpha _{\text {lora}} \frac {\partial \mathcal {L}}{\partial W_t} A_t^\top A_t

 (20)

Since Wt ∈ Ro×c, we have ∂L
∂Wt

∈ Ro×c. With l is
a row vector of ∂L

∂Wt
, lA⊤

t ∈ R1×r, then lA⊤
t At is the

linear combination of all row vectors in At. So, AtA
⊤
t

projects each row vector of ∂L
∂Wt

into the subspace spanned
by {at,1, . . . , at,r}. This completes the proof of Proposi-
tion 1.

B. Further Insights into Multilinear Operator
Network

Inference process of Multilinear Operator Network
Fig. 2b in the main paper shows the inference process of
MONet.

Multiple pairs of Basic Blocks and Downsamplings are
stacked above one another, followed by the Global Average
Pooling. This inference process ends with a fully connected
layer, combined with Softmax, to return the confidence lev-
els for all classes that are used to predict the label of an
image.

The notable difference between MONet and CNN, ViT
lies in their initial image processing step, where MONet
uses a pyramid patch embedding technique. Initially, it
extracts non-overlapping patches of size p \times p from the
input image using a convolutional layer with a kernel and
stride matching the patch size. These patches are then
passed through a second convolution with a q \times q kernel
and stride of q, further compressing their spatial resolution.
This method captures embeddings at smaller scales and pro-
gressively extracts new patch embeddings on top, allowing
the model to capture finer feature details without increasing
parameters or computational load.

Modifications to MONet with PoLoRA-M Fig. 9 illus-
trates a modified version of the standard Mu-Layers, in
which a skip connection is replaced by a channel projec-

(A) Channel
Projection

(D) Channel
Projection

Spatial
Aggregation

Spatial
Aggregation

(B) Channel
ProjectionLayernorm

Layernorm

Element-wise
Multiplication

(C) Channel
Projection

Skip Connection

(A) Channel
Projection

(D) Channel
Projection

(B) Channel
ProjectionLayernorm

Layernorm

Element-wise
Multiplication

(C) Channel
Projection

Skip Connection

Mu-Layer Type 1 Mu-Layer Type 2

(E) Channel
Projection

(E) Channel
Projection

Figure 9. The architecture of a modified Mu-Layer.

tion, called E. Names of other channel projections are kept
as in Sec. 3.1.

Here, denoted as in [5], A ∈ Rm×c, B ∈ Rm×l, C ∈
Rc×m, and D ∈ Rl×c have parameters for tuning. Then,
the additional channel projection E ∈ Rc×c. It is apparent
that PoLoRA-M is similar to applying the low-rank update
for E. The original MU-Layers are special cases of these
modified Mu-Layers when E is the identity matrix.

Let r denote the rank of the low-rank adaptations matrix.
Then, in each Mu-Layer, the number of trainable parame-
ters for PoLoRA-M is r×2c, lower than that for PoLoRA-C,
which is r×(3m+3c+2l). This, combining with the decent
performance demonstrated in Sec. 5, makes PoLoRA-M an
effective choice for incremental learning with a few train-
able parameters.

C. Gradient Projection Memory
Gradient Projection Memory (GPM) is a technique de-
signed to mitigate catastrophic forgetting by Saha et al.
[32]. It achieves this by projecting gradients orthogonally
to the subspaces representing important information from
prior tasks, ensuring minimal interference.

We denote the gradient space of the (t − 1) old tasks
as Gold,t. GPM uses the matrix Gold,t, the columns of which
form the orthonormal basis of Gold,t, to approximate the gra-
dient of old tasks. GPM constructs the input matrix Ht,
where each column represents an input vector of the t-th
task. The part of Ht which has already been in Gold,t is
discarded by: \widehat {H}_t = H_t - G_{\text {old}, t} G_{\text {old}, t}^{T} H_t = H_t - H_{\text {proj}, t}.

 (21)

Singular value decomposition is then used on the input ma-
trix Ĥt as follows: Ĥt = UΣV T . However, GPM does
not use all column vectors of U as new orthogonal bases to
combine with the existing orthogonal bases in Gold,t to form

the updated orthonormal basis system for the gradients of
learned tasks. Instead, GPM selects only u columns corre-
sponding to the highest singular values, where the number
of columns u is the smallest number satisfying:

 \|(\widehat {H}_t)_u\|_F^2 + \|H_{\text {proj},t}\|_F^2 \geq \lambda \|H_t\|_F^2 (22)

Here, (Ĥt)u = [h1, h2, . . . , hu] represents the compo-
nents of Ĥt associated with the top-u singular values; λ is a
specified threshold whose value can be modified to control
the capacity allocated to learn the new task. In other words,
when λ increases, the dimension of subspace Gold,t tends to
increase. In practice, λ is set to increase from λmin to λmax

at the last task T -th. At task t-th (t ≤ T), the value of λ is:

 \lambda _t = \lambda _{min} + \frac {(\lambda _{max} - \lambda _{min}) * t}{T}

(23)

GPM can work with MONet (Ht just needs input infor-
mation of the channel projection to control the gradient up-
dates) due to Observation 1.

Observation 1. For the channel projection in MONet, the
gradient updates are in the span of the input pixel-wise fea-
ture vectors.

We denote the loss function as L, the forward propaga-
tion of a channel projection as:

 z = Wx (24)

where the weight of a channel projection is represented by
a matrix W ∈ Ro×c, the input tensor x ∈ Rc×h×w. Then,
z ∈ Ro×h×w, with 1 ≤ i ≤ h, 1 ≤ j ≤ w, we have:

 z_{i,j} &= [z_{1, i, j}; z_{2, i, j}; \dots ; z_{o, i, j}]^\top \\ &= W [x_{1, i, j}; x_{2, i, j}; \dots ; x_{c, i, j}]^\top \\ &= W x_{i, j} \label {eq:Wxij}.

 (27)

With the chain rule, we have:

 \frac {\partial \mathcal {L}}{\partial W} &= \sum _{1 \leq i \leq h, \; 1 \leq j \leq w} \frac {\partial \mathcal {L}}{\partial z_{i, j}} \cdot \frac {\partial z_{i, j}}{\partial W} \\ &= \sum _{ 1 \leq i \leq h, \; 1 \leq j \leq w} \frac {\partial \mathcal {L}}{\partial z_{i, j}} \cdot x_{i, j}^\top .

 (29)

Therefore, each row of ∂L
∂W is the result of x⊤

i,j multiplied
by a real value. This completes the proof of Observation 1.

D. Experimental Details
D.1. Dataset Processing
As stated in Sec. 5, our experiments are conducted on
three popular datasets in incremental learning: CIFAR-100
[20], ImageNet-R [14], and PACS [23]. For CIFAR-100

and ImageNet-R, classes are randomly divided into sepa-
rate groups to form different tasks. In PACS, tasks are de-
fined by domains, namely photo, art painting, cartoon, and
sketch, in order.

CIFAR-100 and ImageNet-R provide predefined training
and validation splits, while for PACS, we allocate 80% of
the data for training and the remaining 20% for validation.

D.2. Hyperparameter Settings
As illustrated in Sec. 5, we set the batch size to 64 and
trained every model for 20 epochs on each task in all our
experiments. For IPoLoRA methods, we utilize Adam op-
timizer with the learning rate of 0.002, and (β1, β2) =
(0.9, 0.999) for all datasets.

The only difference between our hyperparameters for the
two IPoLoRA frameworks is the value of GPM scaling fac-
tor αGPM. For IPoLoRA-M, we set αGPM = 200, whereas
for IPoLoRA-C, αGPM = 2. Unless explicitly mentioned
otherwise, we use the default hyperparameters as in Tab. 6.
For a fair comparison, we use identical hyperparameters
across all approaches under the same experimental settings.

E. Additional Results
E.1. Task prediction accuracy

2 4 6 8 10
Number of known tasks

20

40

60

80

100

Ta
sk

 p
re

di
ct

io
n

ac
cu

ra
cy

 (%
)

IPoLoRA-M
IPoLoRA-C
Classifier Fine-Tuning
Full Fine-Tuning

Figure 10. Task prediction accuracy with different numbers of
known tasks for each method in CIFAR-100.

Fig. 10 and Fig. 11 present the task prediction accuracy
throughout the training process across methods on CIFAR-
100 and PACS, respectively. In these experiments, if a
model predicts a sample to belong to a specific class, we
consider it as predicting the task associated with that class.

From both figures, we observe that the task prediction
accuracy of Full Fine-tuning is consistently the lowest, and
significantly decreases as the number of known tasks in-
creases. This is attributed to the observation that Full Fine-
tuning tends to overfit the latest task and make biased pre-

1 2 3 4
Number of known tasks

40

50

60

70

80

90

100

Ta
sk

 p
re

di
ct

io
n

ac
cu

ra
cy

 (%
)

IPoLoRA-M
IPoLoRA-C
Classifier Fine-Tuning
Full Fine-Tuning

Figure 11. Task prediction accuracy with different numbers of
known tasks for each method in PACS.

dictions toward its classes, therefore significantly exacer-
bating forgetting of previously learned tasks, as demon-
strated in Fig. 6, Sec. 5.

Classifier Fine-tuning performs better but still falls
short compared to the IPoLoRA methods. Among these,
IPoLoRA-C outperforms all other approaches across both
datasets and task numbers. However, the performance
gap between IPoLoRA-C and IPoLoRA-M is minimal in
CIFAR-100, indicating that IPoLoRA-M performs well
when tasks are closely related.

E.2. Performance on Real-world Datasets
We further evaluate our proposed methods on a real-world
medical image dataset comprising three subdatasets from
MedMNIST [40]—OrganA, OrganC, and OrganS. Each
subdataset represents a different anatomical view of com-
puted tomography (CT) scans: axial (OrganA), coronal (Or-
ganC), and sagittal (OrganS), and is used for multi-class
classification of 11 body organs.

For our incremental learning setup, we construct a three-
task scenario with a total of 33 classes, where each class
corresponds to a specific organ in a given view. Each task
consists of one subdataset with 11 classes. The results are
presented in Tab. 7.

E.3. Additional Ablation Study
Scenarios of different λmin Fig. 12 shows that our
IPoLoRA-M and IPoLoRA-C work well under a wide range
of GPM threshold λmin values. Notably, IPoLoRA-C ex-
hibits high stability, with its final average accuracy varying
by less than 1% (from 62.18% to 62.94% on ImageNet-
R, and from 70.52% to 71.34% on CIFAR-100) as λmin

changes, whereas IPoLoRA-M seems to perform better with
a higher threshold λmin, with its final average accuracy im-
proving from 57.98% to 60.56% on ImageNet-R, and from

Hyperparameter ImageNet-R CIFAR-100 PACS

Batch size 64 64 64
Number of epochs per task 20 20 20
Adam optimizer (β1 & β2) 0.9, 0.999 0.9, 0.999 0.9, 0.999
Initial learning rate 0.002 0.002 0.004
Learning rate decay 0.1 0.1 0.1
PoLoRA rank r 10 10 10
GPM threshold λmin 0.95 0.95 0.98
GPM threshold λmax 1.0 1.0 1.0
PoLoRA scaling factor αlora 0.5 0.5 0.5
GPM scaling factor αGPM (for IPoLoRA-M) 200 200 20
GPM scaling factor αGPM (for IPoLoRA-C) 2 2 2

Table 6. Choices of hyper-parameters for IPoLoRA.

No. of tasks 1 2 3

Full FT 92.51 ± 1.30 31.87 ± 1.83 18.90 ± 5.32
Classifier FT 77.76 ± 0.12 61.08 ± 0.74 49.70 ± 0.49

PoLoRA-M 92.50 ± 0.63 54.64 ± 3.52 40.06 ± 1.53
PoLoRA-C 94.92 ± 0.25 68.99 ± 1.10 53.18 ± 1.38

IPoLoRA-M 92.48 ± 0.44 72.41 ± 0.74 59.32 ± 1.19
IPoLoRA-C 94.85 ± 0.19 72.49 ± 1.67 60.15 ± 0.89

Table 7. Average accuracy with different numbers of known tasks
on the MedMNIST dataset.

67.68% to 69.52% on CIFAR-100 when λmin increases
from 0.80 to 0.98.

Authors of GPM, Saha et al. [32], stated that a low
value of λmin allows the optimizer to modify weights in
directions strongly influenced by past data, which can sig-
nificantly disrupt the correlation between past inputs and
weights, potentially causing catastrophic interference. In
contrast, a high value of λmin helps preserve these correla-
tions but may hinder the learning of new tasks due to the
increased constraints in the gradient space. Fig. 12 ver-
ifies the impact of this phenomenon on IPoLoRA-M and
IPoLoRA-C. IPoLoRA-C achieves the best performance
when λmin is sufficiently large but not excessively high.
Meanwhile, IPoLoRA-M tends to work better even when
λmin increases, without difficulties in learning new tasks.
This might be due to the fact that training PoLoRA-M is
similar to applying the low-rank update for additional chan-
nel projections while keeping the weights of other existing
channel projections, which is discussed in Sec. 4 and Ap-
pendix B.

Impact of PoLoRA scaling factor We examine the sen-
sitivity of the PoLoRA scaling factor αlora on ImageNet-R
(10 tasks) and CIFAR-100 (10 tasks) scenarios, testing val-

0.80 0.85 0.90 0.95
min

56

58

60

62

64

Ac
cu

ra
cy

 (%
)

IPoLoRA-M
IPoLoRA-C

(a) On ImageNet-R (10 tasks)

0.80 0.85 0.90 0.95
min

66

68

70

72

74

Ac
cu

ra
cy

 (%
)

IPoLoRA-M
IPoLoRA-C

(b) On CIFAR-100 (10 tasks)

Figure 12. Impact of GPM threshold λmin on the performance
(%) of IPoLoRA.

PoLoRA s.f. 0.1 0.2 0.5 1 2

ImR
IP-M 56.78 58.83 60.09 59.04 58.71
IP-C 59.87 61.42 62.85 62.08 56.49

CI
IP-M 67.24 68.85 69.21 68.74 68.32
IP-C 68.76 70.46 70.70 69.68 65.67

Table 8. Impact of PoLoRA scaling factor on the performance (%)
of IPoLoRA. ImR: ImageNet-R (10 tasks), CI: CIFAR-100 (10
tasks), IP: IPoLoRA.

ues in the range of [0.1, 0.2, 0.5, 1, 2]. As shown in Tab. 8,
the results remain stable across a wide range of αlora values,
with the optimal configuration being αlora = 0.5.

Additionally, we also compare the final average accuracy
AccT of IPoLoRA-M using the same set of GPM scaling
factor, {1, 2, 5, 25, 100, 200, 300}, in two scenarios:

(1) Using a fixed value for the PoLoRA scaling factor
αlora, for every value of αGPM.

(2) Calculating the PoLoRA scaling factor as αlora =
Cα · αGPM, where Cα is a constant.

Tab. 9 shows that altering αGPM while keeping PoLoRA
scaling factor unchanged (αlora = 0.5) can degrade the

GPM s.f. (αGPM) 1 2 5 25 100 200 300

ImR
αlora = 0.5 6.98 23.36 45.88 57.20 59.66 60.09 60.10
Cα = 0.0025 59.74 60.32 59.97 59.96 60.04 60.09 60.22

CI
αlora = 0.5 19.05 31.72 52.41 66.53 68.73 69.21 69.02
Cα = 0.0025 69.49 69.23 69.38 69.35 69.43 69.21 69.63

Table 9. The performance (%) of IPoLoRA-M with adjusted αlora

w.r.t different αGPM values. ImR: ImageNet-R (10 tasks), CI:
CIFAR-100 (10 tasks).

model performance when the value of αGPM decreases,
as discussed in Sec. 5. However, when the ratio of the
two scaling factors remains constant at Cα = 0.0025, the
changes in AccT are negligible. This means when changing
αGPM, we can change αlora so that the performance remains
almost unchanged. This indicates that αlora and αGPM can
be fine-tuned interchangeably, offering a versatile approach
to fine-tuning.

	Proofs
	Further Insights into Multilinear Operator Network
	Gradient Projection Memory
	Experimental Details
	Dataset Processing
	Hyperparameter Settings

	Additional Results
	Task prediction accuracy
	Performance on Real-world Datasets
	Additional Ablation Study

