
EigenGS Representation: From Eigenspace to Gaussian Image Space

Supplementary Material

Additional Results & Visualizations

The supplementary material includes additional visualiza-
tions and detailed experimental results that highlight key
aspects of our method, where the visualization is primar-
ily using the FFHQ dataset. All experimental settings are
aligned with those described in the main paper. Section I
presents comprehensive quantitative and qualitative results
across different datasets. Our method is able to achieve con-
sistent performance across diverse image categories and res-
olutions. Section II provides an analysis of our frequency-
aware learning mechanism. We show the advantage of color
space selection in Section III.

I. Quantitative and Qualitative Evaluations

We present comprehensive quantitative and qualitative re-
sults across our four benchmark datasets to show the effec-
tiveness of the ImageNet-trained, universal EigenGS model.
Figures I to IV show the visualization results using our
ImageNet-trained EigenGS, which is noteworthy as it was
trained on an unaligned collection of images with arbitrary
sizes. The successful adaptation of this universal model to
different datasets highlights the robustness of our approach.

Tables I to IV provide detailed performance met-
rics comparing three scenarios: the baseline Gaussian-
Image method, dataset-specific trained EigenGS, and our
ImageNet-trained universal EigenGS. In that, the dataset-
specific trained EigenGS can represent the performance up-
per bound of our method, while the scores of ImageNet
version corresponds to visualization. Overall, though the
ImageNet-trained model shows a slight performance de-
crease compared to dataset-specific training, it consistently
outperforms the baseline method across all datasets.

For CelebA, the reconstruction shows excellent preser-
vation of facial features even at early iterations. Mean-
while, the FFHQ results demonstrate robust handling of
high-resolution facial details. The Cats dataset shows our
method’s ability to capture broader structural elements.
Lastly, despite the challenging variety of viewpoints in the
Stanford Cars dataset, our method can still achieve high-
quality reconstruction. These results particularly confirm
that our EigenGS representation maintains consistent per-
formance across different datasets even when using the
ImageNet-trained model, which suggests that our approach
successfully captures universal image statistics and gener-
alizes well across domains.

II. Spatial Frequency
Our frequency-aware learning mechanism reveals interest-
ing characteristics in how different spatial frequencies are
handled in image reconstruction. Through visualization of
the Gaussian components shown in Figure V, we can ob-
serve the larger spatial extent of the low-frequency Gaus-
sians, Nl, indicating their role in capturing larger structural
elements. In contrast, the high-frequency set Nh consists
of smaller Gaussians that provide fine detail refinement, as
evidenced by their more compact elliptical boundaries.

The low-frequency set Nl comprises approximately 10%
of the overall number of Gaussians, which establishes a
foundational structure that remains largely stable during
optimization. This foundation serves as a ground layer
upon which high-frequency details are subsequently re-
fined. This hierarchical approach proves particularly effec-
tive in preventing “penny-round-tile” artifacts, which typ-
ically emerge when all Gaussians converge to uniformly
small sizes and locate side-by-side on the image to create
a visually distracting pattern, as shown in the main paper.

III. Color Space
Our experimental results show that the choice of color space
may impact both the visual quality and convergence charac-
teristics of EigenGS. By visualizing the reconstruction pro-
cess Figures VI to VII, we observe distinct differences be-
tween RGB and YCbCr color space implementations, par-
ticularly in handling PCA-based reconstruction artifacts.

The YCbCr color space offers natural advantages
through its separation of luminance (Y: 16-235) and chromi-
nance (Cb/Cr: 16-240) components. This design provides
inherent margins for handling reconstruction values that
may fall outside the typical 0-255 range during PCA-based
processing. In contrast, when using RGB color space, all
three channels are processed with equal weighting, and
thus, the reconstruction is more susceptible to outliers, par-
ticularly in regions with extreme values.

A particularly notable advantage of YCbCr implementa-
tion is its superior convergence speed. As evident in the vi-
sualizations, YCbCr-based reconstruction shows significant
improvements within just 10 iterations, achieving sharper
results compared to RGB. This acceleration in convergence
can be attributed to the reduced dimensionality of color
information: YCbCr isolates intensity variations to the Y
channel, with only two channels handling color informa-
tion. This characteristic appears to enhance optimization
stability by reducing inter-channel interference during the
reconstruction process.
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Figure I. Qualitative results on the CelebA dataset using ImageNet-trained EigenGS.
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Figure II. Qualitative results on the FFHQ dataset using ImageNet-trained EigenGS.
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Figure III. Qualitative results on the Cats dataset using ImageNet-trained EigenGS.
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Figure IV. Qualitative results on the Cars dataset using ImageNet-trained EigenGS.

CelebA ITER=0 100 500 1000 5000 10000

GaussianImage
PSNR - 10.3± 2.4 21.9± 1.2 30.0± 2.1 43.8± 2.9 45.2± 2.8
SSIM - 0.47± 0.05 0.82± 0.04 0.95± 0.02 0.99± 0.001 0.99± 0.001

% - 0 0 0 91 97

Ours (CelebA-trained EigenGS)
PSNR 29.9 37.8± 3.8 41.6± 3.9 43.6± 3.6 47.1± 3.1 48.1± 3.1
SSIM 0.93 0.98± 0.02 0.99± 0.01 0.99± 0.003 0.99± 0.001 0.99± 0.001

% - 28 66 89 98 99

Ours (ImageNet-trained EigenGS)
PSNR 28.7 35.4± 3.4 39.6± 3.7 42.2± 3.6 46.3± 3.2 47.3± 3.1
SSIM 0.91 0.96± 0.03 0.99± 0.01 0.99± 0.01 0.99± 0.002 0.99± 0.001

% - 10 47 80 98 98

Table I. Quantitative comparison on the CelebA dataset with PSNR, SSIM, and percentage of images achieving PSNR larger than 40 dB.

5



FFHQ ITER=0 100 500 1000 5000 10000

GaussianImage
PSNR - 10.4± 1.7 21.8± 0.9 29.4± 1.6 39.2± 1.9 40.1± 1.9
SSIM - 0.41± 0.05 0.77± 0.05 0.94± 0.03 0.99± 0.001 0.99± 0.001

% - 0 0 0 98 99

Ours (FFHQ-trained EigenGS)
PSNR 28.0 34.4± 2.4 36.4± 2.6 37.5± 2.6 40.7± 2.5 41.8± 2.4
SSIM 0.87 0.95± 0.02 0.98± 0.01 0.99± 0.01 0.99± 0.003 0.99± 0.002

% - 41 76 83 98 99

Ours (ImageNet-trained EigenGS)
PSNR 27.2 34.1± 2.5 36.1± 2.6 37.2± 2.7 40.5± 2.6 41.6± 2.4
SSIM 0.84 0.95± 0.02 0.97± 0.01 0.98± 0.01 0.99± 0.003 0.99± 0.002

% - 39 71 79 97 99

Table II. Quantitative comparison on the FFHQ dataset with PSNR, SSIM, and percentage of images achieving PSNR larger than 35 dB.

Cats ITER=0 100 500 1000 5000 10000

GaussianImage
PSNR - 11.2± 2.2 22.2± 1.3 30.4± 2.2 42.4± 4.9 43.2± 4.9
SSIM - 0.47± 0.10 0.82± 0.07 0.96± 0.02 0.99± 0.02 0.99± 0.02

% - 0 0 0 69 74

Ours (Cats-trained EigenGS)
PSNR 30.6 38.1± 4.8 41.3± 5.2 42.8± 5.1 45.3± 4.5 46.1± 4.5
SSIM 0.92 0.97± 0.02 0.99± 0.01 0.99± 0.01 0.99± 0.001 0.99± 0.001

% - 35 57 70 89 90

Ours (ImageNet-trained EigenGS)
PSNR 29.6 37.6± 5.2 41.1± 5.6 42.9± 5.4 45.9± 4.7 46.6± 4.6
SSIM 0.90 0.96± 0.04 0.99± 0.02 0.99± 0.01 0.99± 0.002 0.99± 0.002

% - 35 59 67 88 90

Table III. Quantitative comparison on the Cats dataset with PSNR, SSIM, and percentage of images achieving PSNR larger than 40 dB.

Cars ITER=0 100 500 1000 5000 10000

GaussianImage
PSNR - 12.7± 0.8 23.9± 0.7 32.9± 1.6 41.8± 2.3 42.9± 2.2
SSIM - 0.57± 0.05 0.03± 0.01 0.98± 0.001 0.99± 0.004 0.99± 0.001

% - 0 0 10 100 100

Ours (Cars-trained EigenGS)
PSNR 24.4 31.6± 2.5 34.1± 3.1 36.6± 3.6 43.3± 4.2 44.7± 4.1
SSIM 0.85 0.95± 0.02 0.98± 0.01 0.99± 0.01 0.99± 0.001 0.99± 0.001

% - 11 32 67 99 100

Ours (ImageNet-trained EigenGS)
PSNR 23.9 31.5± 2.5 33.9± 2.9 36.3± 3.2 43.2± 4.1 44.5± 4.1
SSIM 0.84 0.95± 0.03 0.98± 0.01 0.99± 0.01 0.99± 0.02 0.99± 0.01

% - 8 38 62 98 99

Table IV. Quantitative comparison on the Cars dataset with PSNR, SSIM, and percentage of images achieving PSNR larger than 35 dB.
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Nh Nh (Ellipse) Nl Nl (Ellipse) Ground Truth

Figure V. Spatial frequency separation using normalized Y-channel rendering, where darker and brighter regions represent negative and
positive Gaussian clusters respectively. From left to right: Nh shows reconstruction from only high-frequency Gaussians; Nh (Ellipse)
visualizes the smaller spatial coverage of detail-oriented Gaussians; Nl shows reconstruction using only low-frequency Gaussians, Nl

(Ellipse) displays the same Gaussians with reduced scale to highlight their spatial extent, and GT shows the ground truth image.
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Figure VI. Color space comparison on FFHQ dataset. Top row: RGB color space reconstruction shows noticeable color shifts particularly
at early iteration, e.g., the red and blue fringe-like artifacts around the hair and eyes. Bottom row: YCbCr color space reconstruction
shows superior early convergence with sharp detail preservation, even for the hair regions, exhibiting minimal color artifacts throughout
the optimization process.

ITER = 0 ITER = 10 ITER = 100 ITER = 1000 GT

Figure VII. Another example of color space comparison on FFHQ dataset. Top: RGB color space reconstruction displays visible color
bleeding during intermediate iterations. Bottom: YCbCr color space reconstruction maintains better color fidelity and stability, further
supporting the advantages of separated luminance-chrominance processing in our method.
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Figure VIII. Visual comparison between GaussianImage (top) and our method (bottom).
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