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Appendix
This supplementary document provides additional experi-
mental results and visualizations supporting our main paper.
• Section A presents visual examples from our collected

amodal datasets.
• Section B illustrates qualitative comparisons between

SAMEO and AISFormer [9].
• Section C shows the adaptation from modal to amodal

segmentation compared to EfficientSAM [11].
• Section D extends our quantitative evaluation with class-

specific metrics.
• Section E highlights the limitations of SAMEO and sug-

gests potential directions for future research.

A. Amodal Dataset Visualization
Our collected amodal datasets, shown in Figure B, serve as
essential training data for zero-shot amodal instance seg-
mentation. Across ten diverse examples (COCOA [13],
COCOA-cls [2], DYCE [1], KINS [7], MUVA [3],
D2SA [2], KITTI-360-APS [5], MP3D-amodal [12],
WALT [8], and pix2gestalt [6]), we display modal and
amodal mask pairs. Our proposed Amodal-LVIS dataset
features dual annotations of both occluded and unoccluded
versions of each instance. This curated collection provides
rich training signals that enable our model to learn gener-
alizable amodal segmentation capabilities across different
domains and object categories.

B. Qualitative Comparison
We compare SAMEO’s amodal instance segmentation ca-
pabilities with state-of-the-art AISFormer on COCOA-cls
(Figure C) and MUVA (Figure D) datasets. Using AIS-
Former’s box predictions as prompts, SAMEO generates
amodal masks for detected instances. The qualitative re-
sults demonstrate SAMEO’s superior performance in mask
boundary precision and occlusion estimation, particularly
for complex shapes and instances with multiple overlaps.
Our method significantly outperforms AISFormer in terms
of overall mask quality.

C. Amodal Mask Adaptation
We demonstrate SAMEO’s adaptation from modal to
amodal segmentation through visualization experiments on
the pix2gestalt dataset (Figure E). Comparing the modal
mask predictions from the original EfficientSAM with
SAMEO’s amodal predictions and ground truth masks re-
veals successful adaptation to amodal segmentation. Our

specialized training enables SAMEO to effectively estimate
occluded regions while preserving the high-quality mask
prediction and zero-shot capabilities inherent to the origi-
nal model.

D. Class-specific Results
Table A and Table B present the class-specific AP/AR
evaluations as a complement to class-agnostic results, fol-
lowing identical experimental settings from ??. In both
standard and zero-shot settings, SAMEO consistently im-
proves the baseline models’ performance. In standard eval-
uation, using RTMDet [4] as the front-end detector with
SAMEO achieves the best performance on COCOA-cls,
while using ConvNeXt-V2 [10] as the front-end detector
with SAMEO leads on D2SA. For zero-shot settings, us-
ing CO-DETR [14] as the front-end detector with SAMEO
shows strong results on both COCOA-cls and D2SA, indi-
cating SAMEO’s effectiveness generalizes well across both
class-specific and class-agnostic scenarios.

E. Limitation and Future Work
Although SAMEO notably outperforms SOTA methods in
both scores and quality, it still faces challenges with difficult
cases, as shown in Figure A: incomplete amodal masks (a),
rough edges (b), and unexpected modal outputs (top of (c)).
When multiple objects overlap, using box prompts alone
can cause model confusion. Additional experiments with
using both box and point prompts show promising results
in enhancing target region predictions (bottom of (c)). We
believe exploring different prompt types is a direction for
future work.
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Figure A. Failure cases of SAMEO: (a) incomplete amodal masks,
(b) rough edges, and (c) unexpected modal output.
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Figure B. Visualization of collected amodal datasets. For Amodal-LVIS, each instance has unoccluded (left) and occluded (right) versions.
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Figure C. Qualitative comparison of amodal instance segmentation on COCOA-cls dataset. Each row shows: i) input RGB image,
ii) SAMEO’s amodal prediction using AISFormer boxes as prompts, and iii) AISFormer’s prediction. SAMEO demonstrates superior
mask boundary delineation and more accurate occluded region estimation compared to the baseline.
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Figure D. Qualitative comparison of amodal instance segmentation on MUVA dataset. Each row displays: i) input RGB image, ii) amodal
masks predicted by SAMEO with AISFormer box prompts, and iii) AISFormer predictions. Our approach yields more precise boundaries
and better handles occlusion estimation.
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Figure E. From modal to amodal segmentation on pix2gestalt dataset. Each row demonstrates: i) input RGB image, ii) modal mask
prediction from the original EfficientSAM, iii) amodal mask prediction from our SAMEO, iv) ground truth amodal mask. The results
showcase SAMEO’s successful adaptation to amodal segmentation while maintaining zero-shot capabilities.
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