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A. Proof of Lemma 1
We can explicitly write Q under Assumption 1 as follows;
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where Q̂ :=
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n′ + 1m′β⊤(D◦2
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B. Proof of Theorem 1
Because C,D,T(τ), and Q are (m′, n′,K)-block circulant matrices and the set of (m′, n′,K)-block circulant matrices is
closed under addition, subtraction, matrix product, and transposition, G(τ) given by (3) is an (m′, n′,K)-block circulant
matrix.

Similarly, because the set of (m′, n′,K)-block circulant matrices is closed under addition and scalar product, T(τ+1)

given by (5) is an (m′, n′,K)-block circulant matrix when S(τ) is an (m′, n′,K)-block circulant matrix.
We next show the existence of an (m′, n′,K)-block circulant matrix which is an optimal solution to the problem (4). Let

S′ be an optimal solution to (4). We define S∗ as follows:
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and (S∗)
⊤
1m = b by similar calculation. Because obviously S∗ ∈ Rm×n

≥0 , S∗ is a feasible solution to (4), i.e., S∗ ∈
Π(a,b) = {X ∈ Rm×n

≥0 | X1n = a,X⊤1m = b}.
Next we check the objective function value. Let f (τ)(S) be the objective function of (4). We get
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Note that we use the convexity of f (τ) and Jensen’s inequality in the inequality relationship of the above equation. The
inequality (A1) and the optimality of S′ to (4) indicates that S∗ is also an optimal solution to (4).

Finally, because
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holds for l = 0, . . . ,K − 1, S∗ is an (m′, n′,K)-block circulant matrix.

C. Synthetic 2D Point Sets
In Secs. 6.1 and 6.2, we generated synthetic 2D point sets for validating the effectiveness of our algorithms. We here show
how to generate them for details. We first generated a 2D point set D0 as follows.

D0 :=

{
(xi, yi) = (ri cos θi, ri sin θi)
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)
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where U(a, b) denotes the uniform distribution between [a, b). Then, we duplicated the 2D point set with rotation as

Dk :=
{
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k
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}
,

for k = 1, . . . ,K − 1, where
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)
is a transposed 2D rotation matrix that rotates 2D points (xi, yi) counterclockwise by the angle 2πk

K . Finally, we united the
all 2D point sets D0,D1, . . . ,DK−1 into the one 2D point set D as follows.

D :=
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This 2D point set D exhibits K-order rotational symmetry on a 2D plane.

D. Symmetric Alignment for Vertices of 2D Objects
In Sec. 6.3, for the input data to C-CG and C-SP, we aligned the vertices of each 2D object to exhibit strict mirror symmetry.
Let V := {(xi, yi) ∈ R2 | i = 0, . . . , d− 1} be the vertices of each 2D object which have a mean of zero. We first detected
the mirror symmetric line using the first (or second) principal component vector (xp, yp) obtained by the principal component
analysis (PCA). The mirror symmetric line can be written as the the line equation y − yp

xp
x = 0. Then, we chose the vertices

on one side of the mirror symmetric line as follows.

W :=

{
(xi, yi) ∈ V
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xp
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}
.

After that, we obtained the reflection ofW across the mirror symmetric line as follows.

Wref := {2(x̂i, ŷi)− (xi, yi) | (xi, yi) ∈ W} ,



where (x̂i, ŷi) is the projection point of (xi, yi) onto the mirror symmetric line given by
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)
.

Finally, we obtained the symmetrically aligned vertices Vsym by unitingW andWref as Vsym = W ∪Wref. Note that if we
obtain xp = 0, we can obtain Vsym by a similar process withW := {(xi, yi) ∈ V | xi ≥ 0}.

E. Further Analysis in Sec. 6.3
In Sec. 6.3, C-CG showed better results than CG with or without the symmetric alignment. Figure A1 shows the coupling
between 2D object examples using each algorithm in Sec. 6.3. As you can see, our C-CG considers the cyclic symmetry of
input data and thus obtained a coupling from the right part of the source object (blue) to the right part of the target object
(red), which results in a lower GWD (i.e., a better local solution) than CG with or without the symmetric alignment. Note that
we observed the equally optimal couplings crossing the mirror symmetry and here showed no-crossing examples. In contrast,
CG with or without the symmetric alignment did not consider the cyclic symmetry of input data explicitly and thus obtained
an unreasonable coupling from the right part of the source object to the left irrelevant parts of the target object across the
symmetric center line, which results in higher GWDs (i.e., worse local solutions) than C-CG. This trend was also observed
among SP, SP with the symmetric alignment, and C-SP.

Figure A1. The coupling between 2D object examples using each algorithm in Sec. 6.3. In each algorithm, the left panel shows the whole
coupling between the two objects, and the right panel shows the coupling from half of the source object (blue) to the target object (red).

F. Symmetric Alignment for 3D Point Cloud
In Sec. 6.4, for the input data to C-CG and C-SP, we aligned the point cloud of each 3D object to exhibit strict mirror
symmetry. Let V := {(xi, yi, zi) ∈ R3 | i = 0, . . . , d− 1} be the points of each point cloud which have a mean of zero. The
dataset used in Sec. 6.4 is well-maintained, and 3D objects are arranged to be mirror symmetric with respect to the YZ-axes
plane. Thus, we chose the points on one side of the mirror symmetric plane as follows.

W := {(xi, yi, zi) ∈ V | xi ≥ 0} .

After that, we obtained the reflection ofW across the mirror symmetric plane as follows.

Wref := {(−xi, yi, zi) | (xi, yi, zi) ∈ W} .

Finally, we obtained the symmetrically aligned point cloud Vsym by unitingW andWref as Vsym =W ∪Wref.



G. On the Optimal Solution to C-EGW
As explained in Sec. 5.1, the outputs of the proposed algorithms, C-CG and C-PG, are restricted to (m′, n′,K)-block circulant
matrices. This raises the following question: Does a (m′, n′,K)-block circulant matrix always exist as a globally optimal
solution to C-EGW? The following proposition shows that this is not necessarily the case.

Proposition A1. There exists an instance of C-EGW whose globally optimal solution is not an (m′, n′,K)-block circulant
matrix.

Proof. We consider the case where (m,n,K, ε) = (4, 4, 2, 0). Let
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Any (2, 2, 2)-block circulant matrix can be written as
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On the other hand, when

T =
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 ,

the objective function value of C-EGW is 3
25 , which is smaller than 3

16 . This implies that a (2, 2, 2)-block circulant matrix
can never be a globally optimal solution to this instance of C-EGW.

Proposition A1 highlights a limitation of this study, showing that there exists an instance of C-EGW to which the proposed
algorithms can never yield a globally optimal solution. This limitation stems from the non-convexity of the GW objective
function and does not occur in standard OT, which is a convex optimization problem.

H. Performance Analysis using Naive Symmetric-Aware Approach
For a further fair comparison, we here tested a naive symmetry-aware approach in the same setting of Sec. 6.1, which
considers only one of the symmetric parts of input data. Specifically, this naive approach first solved GW or EGW for the
input data α,β,C0 and D0, and then duplicated the obtained solution T0 K times as T = IK ⊗T0 for all symmetric parts.
In this naive approach, we used CG or SP to solve GW or EGW and referred to them as naive CG (N-CG) or naive SP (N-SP),
respectively. As an initial solution for N-CG or N-SP, we created a uniform random matrix in [0, 1)m

′×n′
and scaled it to lie

within Π′(α,β) using the Sinkhorn-Knopp algorithm.



Table A1 showed the results. N-CG and N-SP deteriorated GWDs so much compared to other algorithms in Tab. 1 because
they did not consider the cyclic symmetry of input data properly and completely ignored the couplings between the symmetric
parts. The deterioration was more severe when a larger K value was used because using a larger K value in N-CG or N-SP
increasingly ignores the couplings between the symmetric parts.

Algo. K GWD (×10−3) # of iterations Time (s)

N-CG
2 26.79± 54.10 12.41± 4.92 2.67± 0.99
5 112.07± 115.91 9.45± 4.97 0.22± 0.10
10 171.86± 156.70 4.95± 1.16 0.03± 0.01

N-PG
2 12.74± 3.52 6.97± 1.92 0.59± 0.19
5 47.33± 22.3 8.65± 1.34 0.11± 0.02
10 91.93± 112.25 6.54± 0.89 0.03± 0.01

Table A1. Performance analysis with synthetic data as in Section 6.1 using the naive symmetry-aware approach explained in H. “Algo.”
means “Algorithm.” Mean ± SD is shown in each result. # means “the number.” “s” is the symbol for seconds.

I. Performance Analysis under Data-Swapping Disturbance
Given data with cyclic symmetry, there is some arbitrariness in selecting symmetric points. In this experiment, we evaluated
the effect of data swapping on our algorithms. Specifically, we randomly swapped corresponding symmetric points based on
a given swapping ratio, while preserving the cyclic symmetry of the input data. We tested C-CG and C-PG using 10 different
initial solutions for the point cloud data with mirror symmetry in Fig. 2.

Table A2 shows the results. C-CG for solving C-GW showed larger GWDs as the larger swapping ratio. This is because
the swapping increases each value in the Euclidean distance matrices (C and D) and amplifies the GWD value larger when
a bad local solution is reached. In contrast, C-PG for solving C-EGW showed almost the same GWDs in all cases. This
implies that adding the entropy regularization allows the solution space to be non-sparse and softer, which efficiently avoids
bad local solutions and obtains robustness against the data-swapping fluctuations.

Algo. Swap (%) GWD (×10−3) # of iterations Time (s)

C-CG
0 2.388± 1.633 5.3± 0.458 1.750± 0.181

25 3.204± 2.000 5.4± 0.490 1.783± 0.195
50 4.428± 1.870 6.1± 1.375 2.013± 0.473

C-PG
0 3.104± 0.000 7.3± 0.458 1.094± 0.083

25 3.104± 0.001 7.1± 0.300 1.054± 0.061
50 3.105± 0.001 7.2± 0.400 1.061± 0.075

Table A2. The effects of data swapping that preserves cyclic symmetry of input data. “Swap” means the swapping ratio.


