
Supplementary Material: Volumetrically Consistent 3D Gaussian Rasterization

The supplementary material is organized as follows. In
section Sec. A, we show a qualitative comparison between
our volumetric rasterizer and ray marching to visualize the
impact of the sorting and non-overlapping assumptions we
make in our method (see Sec. 4.1 in the main paper). We
derive an expression for the 1D Gaussian distribution along
the camera ray in Sec. B (eq.15 in the main paper). In
Sec. C we validate that our method outperforms 3DGS at
approximating sharp edges and constant texture regions in
a multiview setting on the nerf-synthetic dataset (Sec. 4 in
the main text). We describe the hyperparameters we use
and more details about our modifications to 3DGS’s densi-
fication strategy in Sec. D (Sec. 5 of the main paper), and
report the reconstruction quality metrics for all the scenes
individually in Sec. E. We report our average training times
in Sec. F (Sec 6.1 of main paper). In Sec. G we compare the
reconstruction quality (SSIM and LPIPS) of 3DGS and our
method across different memory budgets, referenced in Sec.
6.1 of the main paper. We present the results of an ablation
study on our method in Sec. H. We analyze the failure cases
from our method compared to 3DGS on the MipNeRF-360
dataset (see Sec. 7 in the main text) and present a quantita-
tive analysis in Sec. I.

A. Comparing volumetric rasterizer with ray
marching

Our method enables volumetrically consistent rasterization
by analytically computing the volume rendering integral for
each primitive. Our approach is accurate under the as-
sumption of correctly sorted and non-overlapping primi-
tives (Sec. 3.2 main paper). In this section, we qualitatively
show the effect of this approximation, i.e. to what extent
and in which situations it deviates from a reference solution
to the volume rendering equation without approximations.
Consequences of overlapping primitives have no relation to
view dependence of color, so we assume view-independent
colors in this experiment to simplify the ray-marching pro-
cess.

We discretize the volume rendering equation using the
quadrature rule, similar to eq. 3 in Mildenhall et al. [6]
and evaluate it via ray-marching. Given a radiance field
parameterized by 3D Gaussians Gi with view independent
colors ci, the density σ(x) and color c(x) at the 3D point x

are given as:

σ(x) =

N∑
i=1

Gi(x), c(x) =
1

σ(x)

N∑
i=1

ciGi(x). (1)

The color and density above are used to evaluate the vol-
ume rendering integral at a pixel by ray-marching along the
corresponding ray. We compare our method to the ray-
marching reference for overlapping and non-overlapping
primitives in Fig. 1. Our method assumes non-overlapping
primitives while computing the volume rendering integral
(eq.10, Sec. 4.1 in the main paper), closely matching the
ray-marching reference in fidelity in Fig. 1 (row 1 and row
2). Since our alpha computation assumes non-overlapping
primitives, we observe a mismatch between our method and
the ray-marching reference when primitives overlap (row 3,
Fig. 1 ). But in practice, the primitives are quite small, and
instances of very high overlap are relatively few. In row
4 of Fig. 1, we render 100 Gaussian primitives with ran-
dom means and covariances and observe that our method
matches the ray-marching reference closely in all regions
apart from those with overlapping primitives, which have a
minor impact on the final rendered image.

B. 1D Gaussian along camera ray

We outline the proof for eq.15 in the main paper, which
describes the 3D Gaussian density of a primitive as a 1D
Gaussian along a camera ray. Recall that in the main paper
(eq.4, Sec. 3.2), we defined the 3D Gaussians as

Gj(x) = exp

{
−1

2
(x− µj)

TΣj
−1(x− µj)

}
(2)

The 1D distribution gj(t) along the ray x = o+ td is given
by (eq. 15 main paper):

gj(t) = Gj(γjd) exp

{
−(t− γj)

2

2β2
j

}
, (3)

where Gj(γjd) is the maximum value of the Gaussian
along the ray, and the 1D Gaussian has mean γj and vari-
ance βj , which are defined as
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Figure 1. Comparison with ray marching We compare our method with ray marching as a reference for some representative configura-
tions of 3D Gaussians. Since our alpha computation is exact for un-occluded primitives, we match the ray marching result with very high
fidelity for non-overlapping Gaussians, in both unoccluded (Row 1) and occluded (Row 2) cases. Note that in row 2, the primitives occlude
each other but are placed far apart along the camera axis ensuring no overlap between them. In (Row 3), we place the two primitives very
close to each other with a high degree of overlap, resulting in a mismatch between ray marching and our method. To evaluate the effect
of the non-overlapping assumption on a more complex setting, we construct 100 Gaussians with uniformly sampled positions and scales
in (Row 4). Since the primitives are typically smaller than the scene’s spatial extent, any overlapping mismatches remain localized. Our
method matches the reference accurately in most regions of the image, with minimal differences in areas with overlapping primitives.
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j d
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j d

. (4)

To derive this result, we substitute x = o+ td in Eq. (3):

gj(t) = Gj(o+ td) = exp

{
−1

2
∆

}
, (5)

where the argument of the exponent,

∆ =

(
td− (µj − o)

)T

Σj
−1

(
td− (µj − o)

)
. (6)

The expression for ∆ can be further expanded as

∆ = t2dTΣj
−1d− 2t

(
µj − o

)T
Σj

−1d (7)

+
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(
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)
(8)

Setting K =

(
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)T
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−1
(
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)
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−1d
− γ2

j , (9)

simplifies the expression for ∆ as follows -

∆ =
1

β2
j

(
t2 − 2tγj + γ2

j +K

)
(10)

=⇒ ∆ =
1

β2
j

(t− γj)
2 +K (11)

=⇒ gj(t) = exp

{
−(t− γj)
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}
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{
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}
. (12)

(13)

In the above equations, K is independent of t. Let t =
tmax maximize gj(t). Above, we showed that

gj(t) = Gj(o+ td) = exp

{
−(t− γj)

2

2β2
j

}
exp

{
−K

2

}
.

Since exp
{

−(t−γj)
2

2β2
j

}
attains its maximum value of 1 when

t = γj , tmax = γj . This can also be verified by setting
d∆
dt = 0 and solving for t. This gives us

gj(tmax) = Gj(o+ tmaxd) = exp

{
−K

2

}
. (14)

We denote Gj(o+ tmaxd) as Gj(γjd) in the main paper
(eq. 15). This concludes the proof of Eq. (3) (eq. 15 in main
paper).
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Figure 2. NerfSynthetic qualitative result. Our approach renders
sharper details for piecewise opaque regions (inset) compared to
3DGS (zoom in).

C. Comparing our method and 3DGS on nerf-
synthetic

Recall that in Fig.2 and Fig.3 in the main text, we fit a sin-
gle image with a fixed number of primitives and observe
that our method is better than 3DGS at approximating sharp
edges and constant regions. Here, we validate this obser-
vation in a multi-view setting on the nerf-synthetic (NS)
dataset. We optimize our method and 3DGS with the same
initialization, and no densification to isolate the expressive-
ness of our method from the optimization dynamics. For
all metrics (PSNR, SSIM, LPIPS) we (29.81, 0.941, 0.074)
outperform 3DGS (29.56, 0.936, 0.082) averaged over all
8 scenes in NS. Our method renders piece-wise constant
textures (common in nerf-synthetic) better than 3DGS. See
Fig. 2 for a qualitative comparison.

D. Implementation details and hyperparame-
ters

Implementation details: Unlike 3DGS which uses 2D
screen space positional gradients, we use the world space
3D positional gradients to compute the gradient norm for
densification thresholding, similar to [5, 7]. We use sepa-
rate positional gradient thresholds for the splitting (10−8)
and cloning (5× 10−5) operations. We require much lower
gradient threshold values since our method produces more
opaque primitives than 3DGS which reduces the positional
gradient value. We densify and prune every 200 iterations.
For pruning, we prune based on the value of θ, the parame-
ter used to parameterize the density of the primitives κ (see
eq. 20 in the main paper). We remove primitives for which
θ is less than a minimum opacity threshold. Similar to [5],
we apply softplus activation (β = 10) to the spherical har-
monic coefficients.

Hyperparameters: The learning rates for density and
color features are set to 0.03 and 0.003 respectively. Ini-
tial and final position learning rates are set to 0.00016 and
0.00001. In the 3DGS codebase, the scene extent (or cam-
era extent) is defined as the maximum distance between any



Scene PSNR SSIM LPIPS #Points
Bicycle 25.04 0.7594 0.2155 3.7M
Bonsai 32.17 0.9498 0.1704 1.5M
Counter 28.92 0.9206 0.1699 1.6M
Garden 27.29 0.858 0.122 3.18M
Flowers 21.41 0.615 0.306 3.8M
Stump 26.70 0.778 0.219 5.3M
Treehill 21.94 0.627 0.329 3.6M
Room 32.00 0.9358 0.1845 1.6M
Kitchen 31.51 0.935 0.113 2.1M

Table 1. Metrics on MipNeRF360 scenes for our method.

Scene PSNR SSIM LPIPS #Points
Train 22.16 0.825 0.195 1.91M
Truck 25.31 0.8838 0.139 1.54M

Table 2. Metrics on Tanks&Temples scenes for our method.

Scene PSNR SSIM LPIPS #Points
Playroom 30.23 0.909 0.250 2.2M
DrJohnson 29.22 0.906 0.244 4.7M

Table 3. Metrics on DeepBlending scenes for our method.

training camera and the average camera centroid. The scene
extent controls the splitting, cloning, and pruning thresh-
olds in the densification process. In our method, we scale
the scene extent by a factor of 2, 5, and 1.5 for the Mip-
NeRF360, Tanks&Temples, and DeepBlending datasets re-
spectively. We also adjust the (hardcoded) pruning hyper-
parameter to prune points with large scales to 0.01 from the
default value 0.1.

E. Per scene metrics
We report metrics from our method for each scene individu-
ally in Mip-NeRF360, Tanks&Temples, and DeepBlending
datasets in Tab. 1, Tab. 2 and Tab. 3. Note that in the main
paper (Tab. 1), we report metrics averaged over all scenes
for the three datasets -Mip-NeRF360, Tanks&Temples, and
DeepBlending. For per-scene metrics on some of the other
baselines, please see [3, 4].

F. Average training times
We use a Nvidia 3090 Ti for training both our method and
3DGS. Our training times are similar to 3DGS, with a slight
slowdown that arises from the extra computations needed
for our alpha computation compared to 3DGS. 3DGS is
able to re-use the splatted 2D Covariance matrix for com-
puting alpha for each pixel. Our method requires comput-
ing tmax and other intermediaries for each pixel separately
which leads to a slight slowdown. We compute inverses

of both the 2D and 3D covariances, as opposed to 3DGS
which does the inverse computation only once for the 2D
covariance in the vertex shader phase. The vertex shader
in our slang.D implementation uses atomic add operations
to write the computed inverse covariance matrices to global
memory. Our method requires more atomic adds per primi-
tive to store 3D covariance matrices, leading to slower per-
formance compared to 3DGS, which requires fewer atomic
adds to store 2D covariance matrices.

For MipNeRF-360 scenes, on average 3DGS and our
method generate 2.62M and 2.93M points respectively, and
the training times for 30000 iterations are 51.5 min and 61
min respectively. Similarly for Tanks&Temples, on average
3DGS and our method generate 1.79M and 1.72M points
respectively, and the training times for 30000 iterations are
20.5 min and 33.2 min respectively.

ZipNerf training: We trained and evaluated ZipNeRF [2]
on a Nvidia A-40 GPU, using their official code release [1].
In the official code release for ZipNeRF, the indoor and
outdoor scenes in the Mip-NeRF360 dataset are evaluated
at 2x and 4x downsampled resolutions respectively. We
trained and evaluated ZipNeRF at full resolution on the
Tanks&Temples and DeepBlending datasets, but for the
MipNeRF-360 dataset, we used 2x downsampled images
(for both indoor and outdoor scenes) to fit them in the GPU
memory. ZipNeRF took approximately 12-13 hours per
scene to train on our GPU. For the Tanks&Temples dataset,
we re-ran COLMAP before training Zip-NeRF as high-
lighted in issue 7 in the official Zip-NeRF code release [1].

G. Reconstruction quality for different mem-
ory budgets

In Fig. 3 we compare the performance of our method against
3DGS across different memory budgets, i.e. across a differ-
ent number of maximum primitives that each method is al-
lowed to generate. We stop densification and pruning once
the optimization reaches the maximum number of allowed
primitives. For each memory budget, we average the results
over 4 scenes, KITCHEN, STUMP, TRAIN, COUNTER. For
the same memory budget, our method consistently outper-
forms 3DGS on both SSIM and LPIPS. This holds across
a range of memory budgets as shown in Fig. 3. Recall that
our method represents opaque textures better than 3DGS
for the same number of primitives. We demonstrated this
through the toy examples in Fig. 2 and Fig. 3 in the main
paper. Since LPIPS and SSIM measure perceptual simi-
larity and edge quality, this also translates to quantitative
improvements as demonstrated in Fig. 3.
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Figure 3. Varying number of primitives: Each data point is
computed by averaging the test dataset metrics over the scenes
KITCHEN, STUMP, TRAIN AND COUNTER

PSNR ↑ SSIM ↑ LPIPS ↓ Points
3DGS 21.38 0.588 0.360 3.4M
3DGS + Our HyperParams 20.66 0.571 0.329 7.4M
Ours w/o Reparam 21.23 0.600 0.309 7M
Ours w EVER Reparam 20.04 0.519 0.396 9.4M
Ours 21.41 0.615 0.306 3.8M

Table 4. Ablations. We show ablations on the FLOWERS scene in
MipNeRF-360 dataset.

H. Ablation study
We conduct an ablation study to assess the impact of hy-
perparameters and density parameterization on our method,
with results shown in Tab. 4. We compare our method with
3DGS (row 1), and for fairness, we also run 3DGS with the
hyperparameters used by our method. Using 3DGS with
our hyper-parameters (row 2) improves LPIPS, but worsens
PSNR and SSIM while generating almost 2x more prim-
itives compared to the base 3DGS configuration (row 1).
Our method (row 4) fares relatively better on all metrics.

We also run our method without density reparameteri-
zation (row 3); we ensure positive density by applying the
softplus activation. We observe improvement in LPIPS and
SSIM compared to 3DGS but at almost double the number
of primitives. We also experiment with the parameterization
proposed in Mai et al. [5] (row 4), which results in poorer
SSIM and LPIPS while producing too many points com-
pared to our method (row 5).

I. MipNeRF-360 dataset failure case analysis
We analyze failure cases for the 3 metrics. We define a fail-
ure case as being worse than 3DGS by a threshold, sepa-
rately chosen for each metric (1dB PSNR, 0.01 SSIM, 0.005
LPIPS). Averaged on all test images in the dataset, our fail-
ure rate is 4.64%, 3.38%, and 2.11% for PSNR, SSIM and
LPIPS respectively. TREEHILL shows the highest failure
rate among all scenes, with LPIPS and SSIM differences
of 0.017 and 0.027, respectively (example in Fig. 4). For
PSNR, we observe an outlier failure case from KITCHEN,
5.6 dB worse than 3DGS (Fig. 4). However, averaged over
all 34 KITCHEN test images, our method (31.51 dB) per-
forms only slightly worse than 3DGS (31.67 dB) in PSNR.
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Figure 4. MipNerf-360 dataset worst failure cases. Top row
(KITCHEN): massive floater (inset) causes PSNR drop. Bottom
row (TREEHILL): failure due to insufficient densification and pos-
sibly inaccurate camera poses. 3DGS prefers a blurry solution,
ours has sharp opaque artifacts.

See Tab. 5 for per-scene quantitative analysis on all three
metrics for Mip-NeRF360 dataset.



Dataset Worst Gap LPIPS Better / Comparable % Failure % Total Images
flowers -0.022 100.0 0.000 21
room 0.005 97.4 2.632 38
bonsai 0.004 100.0 0.000 36
bicycle -0.008 100.0 0.000 24
treehill 0.017 88.2 11.765 17
counter -0.006 100.0 0.000 29
stump 0.004 100.0 0.000 15
garden 0.007 91.3 8.696 23
kitchen 0.004 100.0 0.000 34
Dataset Worst Gap SSIM Better / Comparable % Failure % Total Images
flowers 0.005 100.0 0.000 21
room -0.004 100.0 0.000 38
bonsai -0.006 100.0 0.000 36
bicycle -0.002 100.0 0.000 24
treehill -0.035 58.8 41.176 17
counter -0.001 100.0 0.000 29
stump -0.013 93.3 6.667 15
garden -0.005 100.0 0.000 23
kitchen -0.007 100.0 0.000 34
Dataset Worst Gap PSNR Better / Comparable % Failure % Total Images
flowers -1.204 95.2 4.762 21
room -1.152 97.4 2.632 38
bonsai -2.328 94.4 5.556 36
bicycle -0.414 100.0 0.000 24
treehill -1.174 88.2 11.765 17
counter -2.163 93.1 6.897 29
stump -0.636 100.0 0.000 15
garden -0.536 100.0 0.000 23
kitchen -5.764 91.2 8.824 34

Table 5. Mip-NeRF-360 dataset quantitative analysis Worst Gap is the largest negative difference between our result and 3DGS amongst
test views for a scene, indicating the frame where our method performed the worst relative to 3DGS. For LPIPS (top table), a lower worst
gap is better, whereas for SSIM (middle table) and PSNR (bottom table), a higher worst gap is preferable. As measured by LPIPS (top
table) and SSIM (middle table), our approach is better or comparable (LPIPS within 0.005, SSIM within 0.01) to 3DGS for most scenes
in Mip-NeRF360 except TREEHILL. As measured by PSNR (bottom table), we observe that our approach suffers the most compared to
3DGS for KITCHEN, COUNTER, and BONSAI. A few anomalies cause a high worst gap, though most views are better or comparable to
3DGS. For all other Mip-NeRF360 dataset scenes, we are comparable (PSNR within 1dB) to 3DGS.
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