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We supply more studies of our proposed method for

video moment retrieval (VMR) on the QVHighlights val
dataset. Experimental evaluations depend on the challeng-

ing R1@.7 and mAP@Avg metrics.

1. Additional Quantitative Analysis

Ablation of the anchor-aware mask generated by query-
embedded visual features. Table S1 shows that using only

the original visual features for mask generation causes

R1@.7 to drop from 64.8% to 60.8%, and mAP@avg to

drop from 63.0% to 60.6%, highlighting the benefits of the

query-embedded visual features.

Performance of different VLMs as backbones. Table S2

provides the results of different VLMs as backbones. The

more advanced VLMs like InternVideo2-1B[12] are used as

backbones, the better our method performs.

Statistical evidence about “The most relevant one almost
always appears in the ground-truth”. A frame exhibits

high-similarity with the query if its CLIP similarity to the

query ranks in the top 10%. Only 37.6% of the ground-

truth (GT) frames meet this criterion, confirming that many

GT frames lack high similarity. But the probability that the

most matched frame to the query is within the GT is as high

as 86.0%, confirming that the most relevant frame almost

always appear in the GT.

Generalization of the F2SGD module. Table S3 pro-

vides the R1@.7 results on F2SGD. The first row shows

the results of training and test on non-overlapping splits

of the same dataset. The second row shows the results

of training on ActivityNet Captions[3] (ACT) but test

on QVHighlights[4] (QVH) and Charades-STA[1] (CHA).

Due to the gap between different data distributions, cross-

dataset zero-shot test is not better than in-dataset test. As a

*Corresponding author: Hongxing Wang.

R1@.7 mAP@avg

original visual features 60.8 60.6

query-embedded visual features 64.8 63.0

Table S1. Impact of using original visual features or query-

embedded visual features to generate the anchor-aware mask.

Backbone R1@.7 mAP@avg

CLIP[9] 64.8 63.0

BLIP-2[5] 66.1 65.6

InternVideo2-1B[12] 68.2 66.7

Table S2. Impact of different VLM backbones.

ACT QVH CHA

In-Dataset Test 24.7 39.6 27.7

Zero-Shot Test - 27.9 18.2

Table S3. Results of generalizing the F2SGD module trained

on ActivityNet Captions (ACT) to QVHighlights (QVH) and

Charades-STA (CHA).

common challenge also faced by others[6, 10], further im-

provement is our shared goal.

Metrics for samples with low inter-frame similarity
within a matching segment. We define segments with an

average inter-frame similarity below 0.75 as highly dis-

tinct visual cases. Our method achieves 45.1% mAP@avg

on such samples, surpassing the previous SOTA[13] at

21.9%. In addition, Fig. S1 illustrates our approach’s ability

to handle diverse visual representations (backgrounds) with

similar texture descriptions (“tours a Guinness museum”).

Computation cost analysis. Under identical hardware con-

ditions, Fig. S2 compares the number of training parameters

(M) and inference throughput measured in samples per sec-
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Query:   The vlogger tours a Guinness museum.
Matched 
Segments

…

Figure S1. An example of low similarity between frames in a

matching segment.
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Figure S2. Comparison with the SOTA methods, CG-

DETR [7], EaTR [2], QD-DETR (BR) [8], TR-DETR [11], and

UVCOM [13], in terms of training parameters (M) and inference

throughput measured in samples per second (Samples/s).

Reweight Align
R1@.7 mAP@Avg

w/ Mask w/ Mask

- - 34.4 37.1

� - 38.2 41.8

- � 58.2 57.0

� � 64.8 63.0

Table S4. Impact of w/o and w/ Mask on “Reweight” and “Align”

stages of A2FA. �signifies “included” mask, while - “excluded”.

ond (Samples/s) across cutting-edge methods [2, 7, 8, 11,

13]. For a fair comparison, all the involved methods uti-

lize CLIP [9] as the encoding backbone. As can be seen,

our method outperforms others by achieving faster infer-

ence speed with fewer model parameters.

Impact of anchor-aware mask at different stages of
A2FA. Table S4 shows the effect on VMR of incorporat-

ing the anchor-aware mask (generated by Eq. (6) as given

in the main manuscript) into “reweight” and “align” stages

in A2FA. Without masks in both “reweight” and “align”,

the model achieves only 34.4% in R1@0.7 and 37.1% in

mAP@Avg. Adding masks to either “reweight“ or “align”

improves performance, with “align” benefiting more from

the mask usage. This is because the mask in the “reweight”

stage focuses on evaluating frame importance, while in the

“align” stage, it aligns query-related frames with the query,

highlighting its critical role in feature alignment for VMR.

In the case that masking is used in both stages, we achieve

the best performance, demonstrating the complementary

nature of “reweight” and “align”.

The ratio of the result of formula (5) to the result of for-
mula (15). We count the number of cases where the results

of Eq. (5) completely cover the results of Eq. (15), which

account for 91.6% of the total. This indicates that the re-

sults of Eq. (15) are nearly entirely encompassed by those

of Eq. (5).

2. Additional Visualizations

Evolution of the 2D similarity space at different
stages. We present in Fig. S3 the evolution of the 2D simi-

larity space at different stages of our method: (1) similarity

map between frame features before alignment, (2) similar-

ity map between frame features after alignment by our pro-

posed A2FA, and (3) prediction map made by our proposed

F2SGD. To illustrate various scenarios, we include cases

where a query corresponds to either a single matching in-

terval or multiple matching intervals. From the figure, we

can see that alignment by our A2FA significantly enhances

query-related frame-frame similarity. This makes our sub-

sequent F2SGD easy to highlight the upper-right corners of

high-similarity blocks, enabling the precise detection of sin-

gle or multiple matching interval boundaries.

Query relevance scores r generated by Eq. (9). Based

on Eq. (9) in the main manuscript, Fig. S4 visualizes the

query relevance scores across different video scenarios. Re-

sults show that query-relevant frames within the semanti-

cally related interval (SRI) [bL, bR] (Eq. (5) in the main

manuscript) are assigned high query relevance scores, while

query-irrelevant frames receive low scores. This confirms

that the “Reweight” stage in our A2FA can effectively re-

duce the importance of query-irrelevant frames in the SRI.

Various visualizations of retrieval results. In Fig. S5, we

present various VMR examples. Besides results of our ap-

proach, we also provide ground-truth annotations for ref-

erence and include the previous state-of the-art methods,

TaskWeave [14] and UVCOM [13], for comparison. For

diverse query-video pairs, our approach exhibits its supe-

riority, which consistently localizes the queried moments

with higher overlap with ground-truth intervals in compari-

son with strong competitors.

3. Limitation

Although our proposed method excels in retrieving video

moments, it occasionally fails to accurately locate some

query-video pairs due to the exclusion of additional factors,

such as action and audio. This observation encourages us

to extend the current approach to handling multimodality

scenarios in future works.



Query: A group is making there way up stairs in the dark from a white vehicle parked nearby.Video

Time (1) Before Alignment (2) After Alignment by A2FA (3) Prediction by F2SGD

Prediction (65,75)
Ground Truth (65,75)

(a) A query text corresponds to one matching interval.

Query: A baby's funny moments before having food.Video

Time (1) Before Alignment (2) After Alignment by A2FA (3) Prediction by F2SGD

(65,75)(65(65(65(6565656565665(65,75757575757775757577,75575,75,757,75,75,757575555))))))))))))))))))))

Prediction (1,6), (9,15)
Ground Truth (0,7), (9,16)

(b) A query text corresponds to multiple matching intervals.

Figure S3. Intermediate results at different stages, including (1) similarity map between frame features before alignment, (2) similarity

map between frame features after alignment by our proposed A2FA, and (3) prediction map by our proposed F2SGD.

Query: A woman is looking out over a misty valley through some trees.

Time

Video:

GT

SRI

0.2
0.4
0.6
0.8

QRS:

(a) A query text corresponds to one matching interval.

Time

Query: A bald man in a black shirt discusses Coronavirus testing.

GT GT GTGT GT GT Tim

SRI

0.2
0.4
0.6
0.8

Video:

QRS:

(b) A query text corresponds to multiple matching intervals.

Figure S4. Visualization of query relevance scores (QRS) obtained by Eq. (9) in the main manuscript. GT signifies the true matching

interval, SRI refers to the semantically related interval determined by Eq. (5) in the main manuscript.



Query: A guy is showing off a suite's room.

Time
58s 150s

0s
45s

46s
134s

50s 150s

Video

GT
TaskWeave
UVCOM

Ours

Time

Query: People butcher meat from a carcass.

Time
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(a) A query text corresponds to one matching interval.

Query: Asian man has his mask on his chin when talking.

Time
100s 104s

36s
96s

103s
136s

Video

GT
TaskWeave
UVCOM

Ours

Tim
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Query: An Asian woman wearing a Boston t-shirt is in her home talking.

Time
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(b) A query text corresponds to multiple matching intervals.

Figure S5. Visualized comparisons of the proposed method with the SOTA methods TaskWeave [14] and UVCOM [13]. GT denotes

ground-truth matching intervals for reference.
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