
A. Proof: Correlation Between High-
frequency Area Shigh and Homophily
Level h

We aim to prove the negative correlation between the high-
frequency area of the graph spectrum, denoted as Shigh, and
the homophily level h. To begin with, according to the
graph Laplacian energy, we have:

xTLx =
∑

(u,v)∈E

(xu − xv)
2 = Ediff,

where Ediff represents the sum of signal differences across
edges. The expected value of the sum is given by:

E[Ediff] = E

 ∑
(u,v)∈E

(xu − xv)
2

 .

Assuming that the difference (xu−xv)
2 between connected

nodes u and v in graph G is independent and identically
distributed (i.i.d) and that its expectation is influenced by
the homophily level h, we have:

E[(xu − xv)
2 | yu = yv] ≪ E[(xu − xv)

2 | yu ̸= yv],

where yu and yv denote the labels of nodes u and v, re-
spectively. Therefore, the overall expectation of the signal
difference is approximately:

E[(xu − xv)
2] ≈ (1− h) · E[(xu − xv)

2 | yu ̸= yv].

E[Ediff] ≈ |E| · (1− h) · E[(xu − xv)
2 | yu ̸= yv],

where |E| is the number of edges in the graph. Assuming
that the signal x has length F and its elements xf are i.i.d.
following a normal distribution P(0, σ2), we have:

E[xTx] = E

 F∑
f=1

x2
f

 =

F∑
f=1

E[x2
f ] = Fσ2.

Consequently, the expected value of Shigh is expressed as:

E[Shigh] = E
[
Ediff

Fσ2

]
≈ |E| · (1− h) · E[(xu − xv)

2|yu ̸= yv]

Fσ2
,

E[Shigh] ∝ (1− h),

which shows the negative correlation between the high-
frequency area Shigh and the homophily level h.

B. Fisher Information Matrix
Parameter sensitivity is quantified using the Fisher Infor-
mation Matrix (FIM) [1, 17, 52], which provides a measure
of the amount of information that the observed data carries

about the GNN parameters. Let G represent the graph data,
and let θ represent the parameters of the distribution p(G|θ)
underlying the GNN. The FIM is defined as:

I(θ) = EG∼p(G|θ)

[(
∂ log p(G|θ)

∂θ

)(
∂ log p(G|θ)

∂θ

)⊤
]
,

(13)
where the expectation is taken over the distribution of the
observed graph data. The FIM essentially captures the cur-
vature of the likelihood function in the parameter space, in-
dicating how sensitive the likelihood is to small changes in
the parameters. This sensitivity is crucial in various appli-
cations, including parameter estimation, uncertainty quan-
tification, and model selection.

Nevertheless, the FIM for GNNs is computationally in-
feasible due to the high dimensionality of the parameter
space. Therefore, an approximation is leveraged in our
method. Specifically, the FIM can be approximated using
an empirical distribution derived from the observed data.
This approximation, particularly its diagonal form, simpli-
fies the computation significantly:

Idiag(θ) ≈ EG∼p(G|θ)

[(
∂ log p(G|θ)

∂θ

)2
]
. (14)

To further motivate, we consider the effect of small per-
turbations in the model parameters on the output of the
GNN. This relationship can be rigorously quantified using
the Kullback-Leibler (KL) divergence, which measures the
difference between the original distribution and a perturbed
distribution. Specifically, if the parameters are perturbed by
a small amount δ, the second-order Taylor expansion of the
KL divergence leads to the following approximation:

EG [DKL (p(G|θ)∥p(G|θ + δ))] ≈ 1

2
δ⊤I(θ)δ, (15)

where δ is a small perturbation in the parameter space. This
result shows that the FIM not only measures the sensitiv-
ity of the likelihood function to parameter changes but also
quantifies the expected change in model output as a result
of these parameter perturbations. In other words, the FIM
provides a fundamental connection between the parameter
space and the output space of the GNN.

In summary, the Fisher Information Matrix serves as a
measure of parameter sensitivity for GNNs. By approxi-
mating the FIM, we can quantify the posterior parameter
sensitivity bias between a client and the globe. Correspond-
ingly, a posterior bias-driven aggregation is proposed for
reasonably measuring client contribution and enabling the
global GNN to benefit more from those with lower biases.

C. Contextual Stochastic Block Model
In this research, we utilize the Contextual Stochastic Block
Model (CSBM) [13] to generate synthetic graphs. These



graphs feature variable edge probabilities both within and
between different groups. The primary idea is that nodes of
the same class share a uniform feature distribution. The re-
sulting graph is denoted as G ∼ CSBM(N,F, σ, µ), where
n is the total number of nodes, F represents the feature di-
mension, and σ and µ are the hyperparameters. These hy-
perparameters, σ and µ, control the influence of the graph
structure and node features respectively. We consider two
equal-sized classes, c1 and c0, each with N/2 nodes.

The CSBM produces features of a node u as follow:

xu =

√
µ

N
yuζ +

qu√
F
, (16)

where yu ∈ {−1,+1} indicates the class label of node
vu, µ represents the mean of the Gaussian distribution,
ζ ∼ N (0, I/F ), and qu consists of independently dis-
tributed standard normal variables. The average degree of
the generated graph is denoted as d, and the adjacency ma-
trix A for the CSBM graph is defined by:

P (Auv = 1) =

{
1
N
(d+ σ

√
d) if yu = yv

1
N
(d− σ

√
d) if yu ̸= yv.

(17)

The level of homophily h can be tuned by adjusting σ =√
d(2h− 1), within the range −

√
d ≤ σ ≤

√
d. A fully

heterophilic graph is represented by σ = −
√
d, while a

fully homophilic graph is described by σ =
√
d.

D. Datasets
We perform experiments on node classification tasks on
both homophilic and heterophilic graph datasets to demon-
strate the superiority of our proposed method FedSPA.
Cornell, Wisconsin: These datasets are subsets of the We-
bKB dataset [12]. The WebKB dataset was introduced in
1998, comprising web pages from the computer science de-
partments of various universities, including Cornell Univer-
sity and the University of Wisconsin. These pages are cat-
egorized into five classes: student, faculty, course, project,
and staff. In this dataset, each node represents a webpage,
and edges denote hyperlinks between them. The dataset is
commonly used for tasks such as webpage classification and
link prediction, serving as a benchmark for evaluating ma-
chine learning models in graph-based learning scenarios.
Cora: The Cora dataset [54] is a widely used benchmark
in machine learning and graph analysis, particularly for
tasks like node classification and link prediction. It com-
prises 2,708 scientific publications categorized into seven
classes: Case-Based Reasoning, Genetic Algorithms, Neu-
ral Networks, Probabilistic Methods, Reinforcement Learn-
ing, Rule Learning, and Theory. Each publication is repre-
sented as a node, and edges between nodes denote citation
relationships, forming a citation network with 5,429 links.
Node features are binary vectors indicating the presence or
absence of 1,433 unique words from the publication’s con-

tent. This dataset is instrumental in evaluating the perfor-
mance of various graph-based algorithms and models.
Coauthor-CS, Coauthor-Physics: The Coauthor-CS and
Coauthor-Physics datasets [63] are derived from the Mi-
crosoft Academic Graph and were used in the KDD Cup
2016 challenge. In these datasets, nodes represent au-
thors, and edges denote co-authorship relationships. The
Coauthor-CS dataset contains 18,333 nodes and 81,894
edges, with node features representing the keywords of pa-
pers authored by each individual and labels indicating clas-
sification into 15 fields of study. The Coauthor-Physics
dataset includes 34,493 nodes and 247,962 edges, with sim-
ilar node features and labels representing classification into
5 main research areas. These datasets are widely used for
node classification tasks in graph neural network research
as standard benchmarks to evaluate model performance.
Minesweeper: The Minesweeper dataset [5] is a synthetic
graph dataset inspired by the classic Minesweeper game.
In this dataset, the graph is structured as a regular 100x100
grid, where each node represents a cell connected to its eight
neighboring nodes, except for edge nodes which have fewer
neighbors. Approximately 20% of the nodes are randomly
designated as mines. The primary task is to predict which
nodes contain mines. Node features are one-hot encoded
to represent the number of neighboring mines. However,
for a randomly selected 50% of the nodes, these features
are unknown, indicated by a separate binary feature. This
dataset is commonly used to evaluate the performance of
GNNs under heterophily.
ArXiv-year: The arXiv-year dataset [27] is a benchmark
dataset designed for graph learning tasks, consisting of a
citation network with nodes, edges, node features, and tem-
poral labels. Each node represents a paper from the arXiv
repository, and the edges denote citation relationships be-
tween papers, forming an undirected graph. The node fea-
tures are typically embeddings related to the content of the
paper, such as text-based representations. The node labels
correspond to the publication year of each paper.
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