
Mimir: Improving Video Diffusion Models for Precise Text Understanding

Supplementary Material

In the main paper, we provide a method diagram and
textual description of Mimir. Here, we present the detailed
pseudocode of the Token Fuser in Mimir in Algorithm 1
for direct reference. In the following sections, We introduce
the data processing in Sec. B, the evaluation metric in
Sec. C, the user study in Sec. D, and additional experimental
results in Sec. E. We also introduce limitations and social
impact of our work in Sec. F.5 and Sec. F.6 respectively.
Training requires 64 A100 for about 5 days.

A. Implement Details
We select the widely used CogVideoX-5B [11] as our
baseline and adopted the same implementation settings,
such as v-prediction (i.e., αtϵ−δtx), zero SNR (i.e., rescales
betas to have zero terminal SNR), the DDIMScheduler
with std dev t=0 without randomness, and standard loss
function (
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√
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)∥∥2).
B. Data Processing
We construct a collection of relatively high-quality video
clips with text descriptions using a combination of video
filtering and recaptioning models. As shown in Fig. 1,
the collected data undergoes multiple filtration steps: Basic
Filtration, Quality Filtration, Aesthetic Filtration, Water-
mark Filtration, which removes data that does not meet fun-
damental requirements. After these video-based filtration
steps, captions are generated for the videos. The videos
and their captions are then evaluated for consistency to
ensure the caption accurately describes the video content.
Following this process, approximately 500,000 single-shot
clips remain, with each clip averaging about 10 seconds.
These high-quality video clips are ultimately used for
training Mimir. Next, we provide a detailed explanation of
each stage of this pipeline.
Basic Filtration. At this stage, we focus on computing
video metadata and filtering out invalid videos.
1. Metadata Extraction: Most of important video proper-

ties such as length, width, frame rate, frame count, and
duration are obtained and saving using FFmpeg.

2. Filtering Rules:
• Videos with fewer than 65 frames, a duration of less

than 1s, or an aspect ratio (width / height) outside the
range [1, 2] are excluded.

• Videos with a motion score of 0, determined using
optical flow, are excluded.

Quality Filtration. At this stage, we calculate basic quality
indicators for the videos and remove those that do not meet
the standards.

Algorithm 1 Token Fuser

# Inputs

# Text prompt provided by the user
text_prompt = "Input text prompt"
# Instructional input for fine-tuning
instruction_prompt = "Instruction description"

# 1. Encoding and Tokenization

# Obtain token embeddings from text encoder
e_theta = TextEncoder(text_prompt)
# Obtain token embeddings from decoder-only model
e_beta = DecoderModel(text_prompt)
# Obtain instruction token from decoder-only model
e_i = DecoderModel(instruction_prompt)

# 2. Token Fusion to Address Feature Distribution
Gap

# Normalize e_beta and apply learnable scale
# Apply normalization
e_beta = Normalize(e_beta)
# Scale normalized features
e_beta = LearnableScale(e_beta)

# Apply Zero-Conv to e_beta and e_theta to maintain
original semantic space

# Maintain semantic space for e_beta
e_beta = ZeroConv(e_beta)
# Maintain semantic space for e_theta
e_theta = e_theta + ZeroConv(e_theta)

# Sum modified tokens to form combined tokens
e = e_theta + e_beta # Shape: [n, 4096]

# 3. Stabilizing Divergent Semantic Features
# Initialize learnable tokens and add to instruction

tokens
# Four learnable tokens, shape: [4, 4096]
e_l = InitializeLearnableTokens(count=4, dim=4096)
# Stabilize instruction features
e_s = e_i + e_l

# 4. Final Token Fusion and Video Generation
# Concatenate e_combined and stabilized tokens
e_final = Concatenate(e_combined, e_stabilized) #

Shape: [n+4, 4096]

# Generate videos using the final fused tokens
generated_video = VideoGenerator(e_final)

# Output
return generated_video
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Figure 1. The pipeline for preparing data.



1. Quality Metrics: We use OpenCV to calculate the black
area percentage, brightness, and black frame rate.

2. Filtering Rules:
• Black area > 0.8, excluding.
• Brightness < 0.2, excluding.
• Black frame rate > 0.4, excluding.

Aesthetic Filtration. At this stage, we filter videos based
on aesthetic-related operators.
1. Aesthetic Metrics: We use the aesthetic predictor * to

calculate aesthetic score and OCR coverage.
2. Filtering Rules:

• Aesthetic score < 4.0, excluding.
• OCR coverage > 0.1, excluding.

Watermark Filtration. At this stage, videos containing
watermarks are excluded. Each video is analyzed using
QWen2-VL-7B [1] to detect the presence of watermarks.
Videos flagged as “containing watermarks” are excluded.
Re-Caption. At this stage, we use CogVim2 [3, 8] to
generate captions, which produces semantic and detailed
descriptions of visual contents in videos.
Caption Filtration. Due to hallucinations in large language
models, not all output captions are immediately usable.
To address this, we employ human designed rule-based
methods and text quality metrics to clean the captions.
1. Text Quality Metrics:

• N-gram † repetition rates
• Semantic alignment between the video and the gener-

ated caption using CLIP Score.
2. Filtering Rules:

• 2-gram repetition > 0.056, excluding.
• 5-gram repetition > 0.047, excluding.
• 10-gram repetition > 0.045, excluding.
• Semantic consistency (CLIP score) < 0.25, excluding.

This pipeline ensures the collection of high-quality video
clips with accurate captions, which are suitable for training.

C. Evaluation Metric

We employ several evaluation metrics in VBench [5] to
quantitatively assess our results, including Background
Consistency, Aesthetic Quality, Imaging Quality, Object
Class, Multiple Objects, Color Consistency, Spatial Re-
lationship, and Temporal Style. The detailed metrics are
introduced as follows:

• Background Consistency. This metric evaluates the tem-
poral consistency of background scenes by calculating the
similarity of CLIP [7] features across frames.

• Aesthetic Quality. This assesses the artistic and aesthetic
value perceived by humans for each video frame using
the LAION aesthetic predictor. It reflects qualities such

*https://github.com/christophschuhmann/improved-aesthetic-predictor
†https://github.com/EurekaLabsAI/ngram

as layout, color richness and harmony, photo-realism,
naturalness, and overall artistic quality across frames.

• Imaging Quality. This measures distortions (e.g., over-
exposure, noise, blur) present in generated frames. It is
evaluated using the MUSIQ [6] image quality predictor
trained on the SPAQ [2] dataset.

• Object Class. This metric is computed using GRiT [10] to
measure the success rate of generating the specific object
classes described in the text prompt.

• Multiple Objects. This evaluates the success rate of
generating all the objects specified in the text prompt
within each video frame. Beyond generating a single
object, it assesses the model’s ability to compose multiple
objects from different classes in the same frame, which is
an essential aspect of video generation.

• Color Consistency. This measures whether the synthe-
sized object colors align with the text prompt. It uses
GRiT [10] for color captioning and compares the results
against the expected color.

• Spatial Relationship. This metric evaluates whether the
spatial relationships in the generated video follow those
specified by the text prompt. It focuses on four primary
types of spatial relationships and performs rule-based
evaluation similar to [4].

• Temporal Style. This assesses the consistency of temporal
style by using ViCLIP [9] to calculate the similarity
between video features and temporal features.

D. User Study
To obtain genuine feedback reflective of practical appli-
cations, the 10 participants in our user study experiment
come from diverse academic backgrounds. Since many of
them do not major in computer vision, we provide detailed
explanations for each question to assist their judgments.
• Instruction Following: Determine which video aligns

more closely with the prompt, evaluate whether the main
content is adequately presented in the video, and assess
the accuracy and completeness of the prompt.

• Physics Simulation: Determine which video aligns more
closely with real-world physical laws, including object
motion, transformations, and other dynamics.

• Visual Quality: Determine which video has a more
harmonious overall visual composition and showcases
finer details more exquisitely.

E. Additional Experimental Results
E.1. Short / Long Prompt
To investigate the performance differences of Mimir when
inputting short and coarse prompts versus long and fine
prompts, we randomly sampled 4 prompts from the VBench
dataset. Additionally, VBench provides enhanced versions
of these 4 prompts through a large language model. We



Short & Coarse Prompt: A raccoon dressed in suit playing the trumpet, stage background.

Long & Fine Prompt: A dapper raccoon, dressed in a perfectly tailored black suit with a crisp white shirt and a red bow tie, stands center stage under a spotlight. The stage background
is adorned with rich, velvet curtains in deep burgundy, creating an elegant ambiance. The raccoon, holding a gleaming golden trumpet, begins to play, its tiny paws expertly pressing the
valves. The raccoon's eyes are closed, lost in the music, as the sound of the trumpet fills the air. The stage lights cast a warm glow, highlighting the raccoon's expressive face and the
polished brass of the trumpet, creating a captivating and whimsical performance.

Short & Coarse Prompt: An animated painting of fluffy white clouds moving in sky.

Long & Fine Prompt: A mesmerizing animated painting depicts fluffy white clouds drifting gracefully across a vibrant blue sky. The scene begins with a close-up of the clouds, their
soft edges and varying shades of white creating a sense of depth and texture. As the camera pans out, the sky's rich blue hues become more prominent, contrasting beautifully with the
clouds. The clouds move slowly and fluidly, their shapes constantly shifting and morphing, evoking a sense of calm and tranquility. Occasionally, a gentle breeze causes the clouds to
stretch and elongate, adding a dynamic element to the serene atmosphere. The overall effect is a captivating blend of art and animation, bringing the sky to life in a soothing and visually
stunning display.

Short & Coarse Prompt: Campfire at night in a snowy forest with starry sky in the background.

Long & Fine Prompt: In a serene, snow-covered forest, a crackling campfire casts a warm, golden glow, illuminating the surrounding trees and creating a cozy haven amidst the cold. The
night sky above is a breathtaking tapestry of countless stars, twinkling brightly against the deep, velvety blackness. Snowflakes gently fall, adding a touch of magic to the scene. The
firelight dances on the snow, creating a mesmerizing interplay of light and shadow. The air is crisp and still, with only the soft crackle of the fire and the occasional rustle of the trees
breaking the silence. The scene exudes tranquility and wonder, capturing the essence of a peaceful winter night under the stars.


Short & Coarse Prompt: Motion colour drop in water, ink swirling in water, colourful ink in water, abstraction fancy dream cloud of ink.

Long & Fine Prompt: Vibrant swirls of ink cascade into crystal-clear water, creating an ethereal dance of colors. Rich blues, fiery reds, and lush greens intertwine, forming intricate
patterns that resemble a dreamlike cloud. The ink moves gracefully, expanding and contracting, as if alive, creating mesmerizing abstract shapes. Each droplet bursts into a myriad of
hues, blending seamlessly into one another, evoking a sense of fluid motion and boundless creativity. The scene is a hypnotic display of color and movement, capturing the essence of a
fanciful dreamscape where imagination knows no bounds.


Figure 2. The comparison between results with short & course prompts and long & fine prompts.



Turtle in fluorescent pink and rainbow color armor

Red lion and blue grassland.

Blue cow and Orange Pasture.

Purple tiger and yellow grassland.

A neon pink elephant walking under a glowing green moon.

A green elephant walking under a glowing pink moon.

A gray elephant walking under a glowing red moon.

Figure 3. More examples in terms of color rendering.

input both versions into Mimir and generated correspond-
ing videos. As shown in Fig. 2, leveraging the reasoning
ability of the decoder-only LLM, even with short and coarse
prompts, Mimir can generate results as detailed as those
produced with long and fine prompts. This demonstrates
that Mimir’s token fuser effectively expands the semantic,

leading to precise text understanding capabilities.

E.2. More Interesting Prompts
E.2.1. Spatial Semantic Understanding
Color Rendering. As shown in Fig. 3, our method
demonstrates the ability to accurately understand the color



A friendly dragon puffing colorful smoke, with a giant donut floating to its right. A friendly dragon puffing colorful smoke, with a giant donut floating to its left.

A friendly dragon puffing colorful smoke, with a giant donut floating to its top. A friendly dragon puffing colorful smoke, with a giant donut floating to its bottom.

A mischievous raccoon wearing a tiny hat sits to the left of a floating piece of cheese. A mischievous raccoon wearing a tiny hat sits to the right of a floating piece of cheese.

A mischievous raccoon wearing a tiny hat sits to the bottom of a floating piece of cheese. A mischievous raccoon wearing a tiny hat sits to the top of a floating piece of cheese.

A shoe on the left side of a bowl. A shoe on the right side of a bowl.

A shoe on the top side of a bowl. A shoe on the bottom side of a bowl.

Figure 4. More examples in terms of absolute & relative position.

specifications in the prompt for different objects and gen-
erates videos containing objects with the correct colors. It
highlights the effectiveness of our token fuser in ensuring
semantic alignment between the input prompt and the
generated video. By accurately capturing and representing
color details, Mimir delivers coherent results, even in cases
where multiple objects with distinct colors are specified.

Absolute & Relative Position. As shown in Fig. 4, our
method effectively understands the spatial relationships
(i.e., the absolute & relative position) specified in the
prompt, such as “top”, “below”, “left”, and “right” and
generates videos where objects are positioned correctly
according to these relationships. By accurately representing
spatial arrangements, Mimir ensures that the generated
videos meet the semantic requirements of complex prompts
involving positional relationships between objects.

Counting. As shown in Fig. 5, Mimir demonstrates a
strong ability to understand counting. For example, if

the prompt specifies a certain number of objects, Mimir
accurately interprets this information and generates videos
containing the correct quantity. By successfully handling
quantity-specific prompts, Mimir proves its reliability in
scenarios where precise numeric understanding is critical
for video generation tasks.

E.2.2. Temporal Semantic Understanding
Sequential Actions. This involves capturing the sequence
of actions performed by an object, such as a cat looking
up, then down, or following a more complex pattern like
up, down, and up again. It requires precise temporal
understanding to maintain the correct order of actions. As
shown in Fig. 6, Mimir precisely interprets and reproduces
these action sequences.
Illumination Harmonization. It means light changes in
the environment, such as dawn transitioning to sunrise and
then to sunset. As shown in Fig. 7, Mimir precisely gener-
ates these gradual scene changes, ensuring the illumination



 One Lotus Flower.

Two dogs.

 Two butterflies.

Three birds.

Seven pearls.

Figure 5. More examples in terms of counting.

A cat looks up, then down.

A cat looks down, then up.

A cat looks up, then down, and up again.

Figure 6. More examples in terms of action sequence over time.



As dawn breaks, the once-vivid stars begin to dim, their brilliance softening as the sky transitions from deep indigo to a pale, serene blue. One by one, the
celestial lights vanish, retreating into the vast expanse above. The faint glow of the morning sun brushes the horizon, casting gentle hues of peach and gold. In
their place, a tranquil light blue sky emerges, vast and endless, signaling the quiet start of a new day and leaving behind a faint memory of the night.

The horizon glows with a fiery brilliance as a red sun begins its ascent above the calm sea. Its vibrant hue bathes the sky in shades of crimson and amber,
casting a warm, ethereal light across the water. The sea, once cloaked in darkness, transforms into a shimmering expanse, reflecting the sun’s fiery glow in
rippling patterns. As the sun climbs higher, its light floods the world, illuminating the waves and painting the landscape with radiant warmth, heralding the arrival of
a new day in breathtaking beauty.

Among the forests, mist lingers among the green trees, and the sunlight penetrates the branches and leaves, shedding bits of golden light. In the evening, the
setting sun paints the sky in a blazing orange-red color.

The fields are awakened by the golden sunlight, and a gentle breeze stirs up a green wave. In the evening, the setting sun puts on a coat of fiery red for the earth.
At night, the fields are filled with starlight like water, and the Milky Way in the distance quietly guards this peaceful world.

On the vast plains, at dusk, the setting sun colors the clouds into a flaming golden red, and after nightfall, the deep starry sky shines like a jewel, making the
whole world seem serene and mysterious.

With a ghostly blue glow, the whole world seems pure and mysterious. The setting sun dyed the sky red, and the ice reflected the warm orange light. At night, the
stars are densely packed and the Milky Way crosses the dome of the sky, reflecting the coldness and quietness of the glacier.

Figure 7. More examples in terms of light changes, showcasing the illumination harmonization over time.

harmonization and the alignment with prompts.

Object Transformation. It means transforming an object
into another, such as a car transforming into a superhero.
This is a highly challenging task due to the complexity of
capturing smooth transitions. As shown in Fig. 8, Mimir

precisely understands the prompt and generates well.

E.3. More Comparison Results.

Unaligned Training Data. Since we use 500,000 clips
that we collect ourselves during training, and in order to



A race car speeds down a track and, with a burst of energy, changes into a superhero, launching into the sky to save the day.

A bicycle leisurely rolls along a park path, and suddenly it transforms into a high-speed jet ski, splashing through a nearby lake.

Figure 8. More examples in terms of object transformation over time.

ensure a fair comparison, we train CogVideoX-5B with
the same 500,000 clips as our Baseline. As shown in the
second row of Tab. 1, Mimir (the last row) outperforms
the baseline across all metrics, which demonstrates that the
improvements stem from the design of our model rather
than the data.

Method Object Color Spatial Temporal
Baseline 90.82% 85.29% 68.25% 25.19%
Mimir 92.87% 86.50% 78.67% 26.22%

Table 1. Training with the same training data (500,000 clips).

Extra Information and Fairness. In Mimir, we introduce
extra answer tokens and the four instructions to enhance our
performance. The additional information is a key contri-
bution of this paper, and our focus is on exploring how to
effectively utilize it to enhance video generation. To verify
the performance improvement brought by this additional
information, we have fairly validated the effectiveness of
each module and extra information in Tab. 3 of the main
paper. An alternative approach is to directly expand the
original prompt with detailed information prompted from
the four instructions, and then use the expanded prompt
to generate videos. Therefore, we use the same Phi-
3.5 to recaption prompts based on the same instructions,
and then input them into OpenSora and CogVideoX-5B
for evaluation (marked with # in Tab. 2, where “Re.”

means re-training). As shown in Tab. 2, despite these
models having extra information, their performance still
lags behind Mimir.
Method Object Color Spatial Temporal
OpenSora # 90.83% 85.10% 77.89% 24.08%
CogvideoX # 89.75% 85.10% 66.87% 25.63%
Re. CogvideoX # 90.91% 85.67% 66.57% 25.56%
Mimir 92.87% 86.50% 78.67% 26.22%

Table 2. Compare using the expanded prompt.

Influence of Extra Params. Because we introduced a
decoder-only LLM, which can be regarded as extra param-
eters, we directly integrated Phi-3.5 into the base model
to validate the performance influence of these additional
parameters, as shown in the second row of (the main paper’s
Tab. 3). This integration causes a performance decline
because it disrupts the original pre-trained semantic space.
Furthermore, we report the efficiency impact: the 480P+49
frames generation time increased from 208.6s to 211.9s
(+3.3s), and the checkpoint size increased from 21.51 GB
to 29.15 GB (+7.64 GB).
About SANA. SANA addresses the issue of excessively
large values in LLM outputs through the normalization.
Mimir, developed concurrently, focuses on integrating
LLMs into the existing framework in a non-destructive
manner, prioritizing the preservation of the original model’s
functionality. By leveraging SANA’s normalization (with
citation), our ablation studies have confirmed its effective-



Method Object Color Spatial Temporal
SANA* 2.64% 0% 1.20% 2.80%
Mimir 92.87% 86.50% 78.67% 26.22%

Table 3. Compared to SANA.

ness and show that Mimir further enhances performance.
When SANA is directly applied to video generation train-
ing, the results, as shown in Fig. 9 and Tab. 3, reveal notable
limitations.

A cat looks down, then up. Turtle in fluorescent pink and rainbow color armor

... ...

Figure 9. Results in SANA (T2I) way for video generation.

F. Discussion
F.1. Advantages from Decoder-Only Architecture.
Our intention in highlighting the advantages in our paper is
to emphasize the strengths of LLMs. Given that decoder-
only LLMs currently dominate the NLP field, we discussed
them collectively. Regarding T5, as an earlier encoder-
decoder LLM, its application in generative models typically
uses only its encoder branch for extracting semantic fea-
tures. It is a relatively simple approach which is incom-
patible with decoder structures. Our focus is to integrate
powerful decoder-only LLMs into diffusion models while
enabling collaboration with text encoder like T5 to achieve
improved video generation performance.

F.2. LLM Advantages Contributes to T2V.
The LLM advantages (e.g., the imagenation) mentioned in
this paper specifically refer to the understanding of objects,
colors, motion, spatial relationships, and how they represent
in generated videos. We have provided qualitative proofs
as follows: Fig. 5 of main paper/Fig. 5 demonstrate the
imagine ability to objects, Fig.5 of main paper/Fig. 3 to
colors, Fig.5 of main paper/Fig. 4 to spatial relationships,
Fig.6 of main paper/Fig. 6 to motions. Besides, Tab. 1
of main paper demonstrates quantitative proofs across these
four aspects.

F.3. Component’s Effect
We list explanations of 3 core components bellow: (1) LLM
Integration: By retaining both query and answer tokens,
we preserve the imaginative potential of LLMs, enabling
precise representation of elements like color and motion in
videos. (2) Non-Destructive Fusion: The zero convolution
prevents training from compromising video quality. (3)
Semantic Stabilizer: Using fixed instructions to guide LLM
responses ensures temporal stability in videos. Further, we
have conducted ablation studies on all above components,
and results in Tab. 3 of main paper demonstrate their
respective contributions to improving generated videos.

F.4. Scalability & Computational.
Our non-destructive Token Fuser ensures Mimir, which is
still a diffusion transformer, retains scalability in parameters
and dataset size.

F.5. Limitations
While our current work has made significant strides, it also
possesses certain limitations. Firstly, the generated videos
are typically limited to short durations (a few seconds to
tens of seconds). This is primarily due to the significant
computational resources and storage requirements needed
for generating longer videos. Additionally, extending the
video length may exacerbate temporal inconsistencies, such
as discontinuities in actions or backgrounds across frames,
which can detract from the overall quality and realism.
Secondly, the effectiveness of our T2V model is heavily de-
pendent on the quality and diversity of the training data. In
domains where the training dataset lacks coverage—such as
specific professional scenarios—the model’s performance
can be suboptimal. This limitation highlights the impor-
tance of expanding and diversifying training datasets to
improve the model’s generalizability across a broader range
of applications.

F.6. Social Impact
Our proposed T2V (Text-to-Video) model demonstrates
strong potential for generating high-quality, contextually
accurate video content directly from textual descriptions.
This technology offers significant benefits across various
domains, enabling more accessible, creative, and automated
video generation workflows. However, like any generative
technology, our T2V model also raises concerns about
potential misuse. Malicious actors could exploit it to
produce deceptive or harmful video content, such as fake
news or misleading advertisements, amplifying the spread
of misinformation on social media platforms. This misuse
could lead to detrimental societal consequences, including
the erosion of trust in digital media. Despite ongoing
advancements in generative content detection technologies,
challenges remain, especially in scenarios involving com-
plex, high-quality synthetic videos. To address this, we are
committed to promoting responsible use of T2V technology
and actively contributing to the research community. We
aim to share our generated results to support the develop-
ment of more robust detection algorithms, fostering a safer
digital environment capable of mitigating the risks associ-
ated with increasingly sophisticated generative models.
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