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Supplementary Material

1. Additional Illustration on Method
1.1. Derivation of KCOT
This section gives a detailed derivation of the KCOT prob-
lem in Sec.4.3. The KCOT problem is formulated as:

min
P

M∑
k=1

N∑
i=1

PkiCki − λ1H(P ) + λ2DKL(P ||P̃ ),

s.t. P1N = ũ, P T1M = v.

(1)

Based on the definition of KL Divergence and entropy, the
minimization objective can be simplified as follows:

M∑
k=1

N∑
i=1

PkiCki − λ1H(P ) + λ2DKL(P ||P̃ ),

=

M∑
k=1

N∑
i=1

PkiCki − λ1H(P ) + λ2

M∑
k=1

N∑
i=1

(Pki log
Pki

P̃ki
),

=

M∑
k=1

N∑
i=1

PkiCki − λ1H(P ) + λ2

M∑
k=1

N∑
i=1

(Pki logPki)

− λ2

M∑
k=1

N∑
i=1

(Pki log P̃ki),

=

M∑
k=1

N∑
i=1

Pki(Cki − λ2 log P̃ki)− (λ1 + λ2)H(P ).

(2)
Here, the cost is transformed into C̃ki = Cki − λ2 log P̃ki
and the coefficient of entropy H(P ) is re-weighted into λ̃ =
λ1+λ2. As a result, the KCOT problem is simplified to the
following form:

min
P

M∑
k=1

N∑
i=1

PkiC̃ki − λ̃H(P ),

s.t. P1N = ũ, P T1M = v.

(3)

Eq. 3 is equivalent to an entropic OT problem, and can be
solved by Sinkhorn algorithm [15] within several iterations.
Compared to OT, our KCOT enhances performance without

Algorithm 1 Knowledge-Constrained Optimal Transport

Input:
Visual set Xψ and label set T ;
Teacher plan P̃ and parameters λ1, λ2, tmax;

Output:
Optimal transport plan P ∗;

1: Calculate the cost matrix C with {Xψ,T } in Eq. 7;
2: Set unbalanced marginal distribution ũ for visual set

according to Eq. 8. Set balanced marginal distribution
v = 1N/N for label set;

3: Calculate the transformed cost matrix C̃ in Eq. 11, and
calculate the parameter λ̃ = λ1 + λ2;

4: Initialize b0 = 1, iteration t = 0;
5: while t ≤ tmax and not converge do
6: at = ũ/((exp(−C̃/λ̃)bt−1);
7: bt = v/((exp(−C̃/λ̃)Tat);
8: end while
9: Transport plan P ∗ = diag(at)exp(−C̃/λ̃)diag(bt);

10: return P ∗;

increasing the problem complexity. Moreover, the solution
of KCOT does not involve any gradient propagation or up-
dates on the model parameters, which is highly efficient and
transferable.

1.2. Pseudo Code
The procedure of KCOT is summarized in Alg. 1. In our
studies, tmax = 100 ensures convergence in most cases,
which exhibits great efficiency.

1.3. Discussion on SAA (How does SAA work?)
Suppose the input sequences are projected into {Q,K,V }.
The attention score aij is determined by aij = QiK

T
j . Due

to the image-level objective, the pre-trained attention al-
ways focuses on dominant patch with large attention scores.
Our SAA replaces the calculation with ãij = ViV

T
j . Since

the angle between Vi and Vi is 0, with similar magnitudes,
ãii is always greater than ãij(j ̸= i), producing diagonal-
style attention maps, which ensures better focus on itself.
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Figure 1. Matching comparisons. (a) Simple average pooling
in [4, 19] and (b) independent re-weighting in [5, 6, 9, 11, 16]
overlook the matching property, assigning features to each label
individually. (c) Bipartite matching [8] finds one-to-one match-
ing. (d) Our KCOT performs one-to-many matching under the
guidance of teacher plan and unbalanced marginal. KCOT finds
matching from a global view, suppressing meaningless matching.

1.4. Discussion on the matching framework

As shown in Figure 1, the region aggregations of existing
methods can be summarized into two types: (a) Average
pooling which distributes equal weights to all regions, in-
volving predictions from most irrelevant areas. (b) Inde-
pendent re-weighting, which can be categorized into two
clusters: (i) Softmax re-weighting in [5, 16], which nor-
malizes the image-text similarities for each label individu-
ally. (ii) Attention re-weighting, which is a core strategy
in traditional ML-ZSL methods [6, 12]. Recently, some
works [9, 11] have reused the ideas, which perform cross-
attention between label embeddings and regional features.
However, the “matching” claimed in [9, 11] is actually
an independent re-weighting strategy, since the attention
scores are calculated for each label individually. The simi-
larities between regions and all labels are not jointly com-
pared, as a result, it always emphasizes particular regions
for each label including those non-GTs, resulting in noisy
and error-prone region aggregations.

In this work, we reformulate the problem from the set
matching perspective, where the matching weights be-
tween different elements of the two sets are jointly de-
termined. As shown in Figure 1 (c), a straightforward way
is to find a one-to-one matching (i.e., bipartite matching)
between image regions and labels, which can be resolved
by Hungarian algorithm as in [1]. However, the excessively
sparse matching results in unsatisfactory performance. In
contrast, we introduce optimal transport theory and formu-
late the KCOT problem, which implicitly suppresses match-
ing to irrelevant labels by jointly comparing similarities of

COCO-ZSL

COCO-GZSL

NUS-ZSL

NUS-GZSL

MultiScene-OV

MLRSNet-OV

RAP-OV

PA100K-OV

31.0

37.0

43.0

49.0

37.6

45.2

52.8

60.4

30.0 35.0 40.0 45.0

16.0

18.0

20.0

22.0

20.4

27.8

35.2

42.6

18.0

26.0

34.0

42.0

21.828.635.442.2

19.0

31.0

43.0

55.0

BiAM CLIP MKT DualCoOp Ours

Figure 2. Performance comparisons to state-of-the-art methods on
six datasets across different domains.

all labels, largely enhancing open-vocabulary performance.

1.5. Detailed Architecture of TSS
The input features Xl ∈ RM×d are first reshaped into fea-
ture maps X ′

l ∈ RH′×W ′×d, where H ′ × W ′ = d. To
aggregate local semantics from different receptive fields,
the kernel sizes of two convolutions are set as 3 × 3 and
1 × 1, respectively. To reduce the number of parameters
and network complexity, the cross-attention between image
and text features is parameter-free [3]. The outputs from
two streams are concatenated and pooled. Then a depth-
wise convolution is applied and the sigmoid is performed to
get the spatial masks. Above all, TSS recovers the local se-
mantics through the lens of convolutions and integrates text
features to highlight salient image regions.

1.6. Discussion on the MMC loss
We discuss the difference between our MMC loss and the
commonly used ASL [14] and ranking loss [2]. For a mini-
batch images {Ib}Bb=1, the predicted logit of the ith label
for image Ib is denoted as s(b, i). Suppose P denotes the
positive label set for a single image, and PB is the positive
set for the mini-batch images. ASL is defined as:

LASL=
1

B

1

C

B∑
b=1

C∑
i=1

(1−s(b, i))γ
+

log(s(b, i)), i∈P,

(s(b, i))γ
−
log(1−s(b, i)), i /∈P,

(4)

where γ+ and γ− are two hyper-parameters to enable
the asymmetric focus for positive and negative labels. It
is worth noting that ASL treats each label individually.
Although this can perform well in closed-set multi-label
recognition, it is hard to generalize well to unseen classes.



Datasets Domain Training
GZSL Labels
Testing (seen/unseen)

NUS-WIDE Natural 143K 59K 925 / 81
MS-COCO Natural 44K 6K 48 / 17
RAP-OV PAR 25K 8K 35 / 16
PA100K-OV PAR 59K 10K 16 / 10
MultiScene-OV RS 24K 7K 20 / 16
MLRSNet-OV RS 11K 21K 40 / 20

Table 1. Dataset statistics of the open-vocabulary benchmarks.
“PAR” denotes Pedestrian Attribute Recognition. “RS” denotes
Remote Sensing image classification.

Method # Prompts
NUS COCO

ZSL GZSL ZSL GZSL
w/o prompt - 41.2 20.3 52.7 66.7

Deep prompt 2 46.4 22.9 54.5 67.1
Deep prompt 4 48.4 23.5 54.5 67.3
Deep prompt 8 47.9 23.4 54.1 67.7
Deep prompt 16 47.9 23.3 53.6 67.5
Deep prompt 32 45.0 22.7 53.1 67.5

Table 2. Analysis on the deep label prompting.

Alternatively, contrastive learning is a promising
paradigm to improve zero-shot generalization. Ranking loss
is a representative approach, which is defined as:

Lrank =

B∑
b=1

∑
i∈P
j /∈P

max(1 + s(b, j)− s(b, i), 0). (5)

Different from ASL, ranking loss jointly compares all la-
bels, learning the ordering relationships among these cate-
gories. However, it still encounters two problems: (1) the
contrastive learning is restricted to a single sample, which
hinders the generalization. (2) the performance on large-
scale categories is limited (as shown in Table 3), possibly
due to the unstable gradients caused by large values in loss.

In contrast, InfoNCE [13] exhibits more stable optimiza-
tion due to the normalized outputs. Inspired by Supervised
Contrastive Learning (SCL) [7], InfoNCE can be extended
to multi-label scenarios by defining multiple positive pairs:

L=− 1

|P|

B∑
b=1

log
exp(s(b, i)/τ ′)∑N
j=1exp(s(b, j)/τ ′)

. (6)

In this work, we further extend the negative references into
the mini-batch, yielding MMC loss:

LMMC =− 1

|PB |
∑

(b,i)∈PB

log
exp(s(b, i)/τ ′)∑B

b
′
=1

∑N
j=1exp(s(b′, j)/τ ′)

, (7)

Compared to ASL, MMC loss inherits the advantages
of contrastive learning, enabling discriminative representa-
tions. Compared to ranking loss and InfoNCE, MMC loss
allows more diverse entries to be negative references, facil-
itating generalizable alignments.

Loss Type
NUS COCO

ZSL GZSL ZSL GZSL
ASL 43.2 22.4 53.3 66.9
Ranking 41.3 20.8 53.5 66.4
MMC (w/o batch) 45.6 24.2 53.8 67.7
MMC 48.4 23.5 54.5 67.3

Table 3. Additional ablations on MMC loss.

Method
NUS COCO

ZSL GZSL ZSL GZSL
RAM (w/o SAA) 45.2 22.5 52.9 66.8
RAM (w/o TSS) 47.6 23.2 53.6 67.0
RAM 48.4 23.5 54.5 67.3

Table 4. Additional ablations on LLA.

2. Datasets and Implementation Details

Construction of OV benchmarks. For NUS-WIDE and
MS-COCO, we follow previous works to sample the seen
and unseen classes, which results in 925/81 seen and unseen
classes for NUS-WIDE, 48/17 seen and unseen classes for
MS-COCO.

For PAR benchmarks (i.e., RAPv1 and PA100K), we sam-
ple over 30% classes as unseen based on the frequency.
To ensure the quantity of training samples, we select the
most frequent classes as seen labels, which results in 35/16
seen and unseen classes for RAPv1, 16/10 seen and unseen
classes for PA100K.

For RS benchmarks (i.e., MultiScene and MLRSNet), we
randomly sample over 30% classes as unseen, which results
in 20/16 seen and unseen classes for MultiScene, 40/20 seen
and unseen classes for MLRSNet.

Dataset statistics. As summarized in Table 1, the six
datasets contain challenges from distinct domains. For
RAPv1, PA100K and MLRSNet, we take the official test
set for evaluation. For MultiScene dataset, we take the offi-
cial MultiScene-Clean subset for evaluation which contains
7K manually-annotated images.

Implementation details. We apply several augmentation
strategies to training images, including random crop, ran-
dom flip, gaussian blur and random erasing [17]. During
testing, we only perform resize operation. Learning rate is
set as 5e-6 for natural images and 5e-5 for other domains
using AdamW [10] optimizer, and decays with cosine pol-
icy. SGD optimizer with learning rate of 1e-3 is set for all
learnable prompts following a common practice [16, 18].
LLA is applied in the last few layers and visual prompts are
integrated to modulate global feature. On RS and PAR, λ2

is set as 0.01 to neutralize the effect of frozen knowledge.
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Figure 3. Analysis on the starting layer ls. F1@3 is reported on NUS-WIDE and MS-COCO. ls = 10 is a better trade-off.

Method Train Speed
(samples/s)

Test Speed
(samples/s)

Train Mem.
(Byte)

Test Mem.
(Byte)

ZSL GZSL

Baseline 143.5 101.9 5.9G 3.5G 40.6 19.4
Baseline + LLA 103.2 95.7 7.2G 3.8G 41.8 22.0
∆ (by LLA) ↓40.3 ↓6.2 (6.1%) ↑1.3G ↑0.3G (8.6%) ↑1.2 ↑2.6
Baseline + LLA + KCOT 90.3 94.5 8.5G 3.8G 48.4 23.5
∆ (by KCOT) ↓12.9 ↓1.2 (1.3%) ↑1.3G ↑0.0G (0.0%) ↑6.6 ↑1.5

Table 5. Efficiency analysis on the proposed LLA and KCOT. “Mem.” is short for GPU memory usage. All statistics are obtained with a
batch size of 32 on NUS-WIDE.

3. Additional Results
3.1. Analysis on the starting layer ls

As shown in Figure 3, integrating LLA and textual prompts
in early stages (e.g., ls < 6) leads to degraded performance,
possibly due to overfitting. ls = 6 achieves the best results
on GZSL task while ls = 10 exhibits better performance on
ZSL. Overall, ls = 10 is a better trade-off and introduces
fewer parameters and computational overhead.

3.2. Analysis on the deep label prompting Ql

As shown in Table 2, introducing textual prompts greatly
improves performance. A limited number of prompts (e.g.,
2, 4 and 8) achieves great performance on both ZSL and
GZSL. Increasing the number of prompts (e.g., 16 and 32)
does not bring further improvements.

3.3. Additional ablations on the LLA
As shown in Table 4, we remove only SAA and TSS, re-
spectively. Notably, both SAA and TSS bring notable im-
provements and SAA is more important (e.g., with margins
of 3.2% and 1.6% on NUS-ZSL and COCO-ZSL, respec-
tively). Note that SAA is parameter-free, which can be
seamlessly integrated into more diverse tasks as an effec-
tive and efficient recovery.

3.4. Additional ablations on the MMC loss
In Table 3, we provide additional results on both ZSL and
GZSL tasks. Notably, the proposed MMC loss achieves im-
pressive improvements on NUS-WIDE, while the improve-
ments on MS-COCO are less significant. The reason is that:
with a larger number of categories, visually or semantically
similar categories are more likely to overlap in the embed-
ding space. Compared to ASL, contrastive learning is more

effective in handling fine-grained distinctions by explicitly
pushing different labels apart in the embedding space. Be-
sides, removing batch operation in MMC loss yields bet-
ter GZSL performance but significantly inferior ZSL per-
formance. We suggest tailoring the choice to specific task,
as batch operations are easy to implement.

3.5. Analysis on efficiency
As presented in Table 5, LLA brings certain computational
overhead during training while remains lightweight during
inference. KCOT delivers remarkable performance gains
with almost no extra overhead during inference (i.e., only
1.3% speed drop and nearly 0.0% memory increase), which
verifies the efficiency of our proposed LLA and KCOT.

3.6. Additional visualizations
Unbalanced marginal ũ. In Figure 4, we visualize vector
ũ ∈ RM in LPD by reshaping it into RH′×W ′

and resizing
to the image size. Note that this does not directly repre-
sent the weights of regions, but instead serves as a marginal
constraint to the matching. LPD successfully emphasizes
foreground areas. Notably, it avoids fully binarizing the tar-
get regions, allowing most regions to remain partially high-
lighted, which ensures generalization to unseen classes.
Visualizations of matching results (individual view). As
shown in Figure 5, we visualize the matching results P ∗ ∈
RM×C w.r.t. each label (i.e., RM , individual view). We
first reshape it into RH′×W ′

and resize to the image size.
Our method generates precise region-to-label matching un-
der different circumstances, e.g., matching clock in both
indoor and outdoor, matching banana of whole and sliced
ones. Notably, for a given category, our approach is capa-
ble of matching all corresponding objects in the image. For



instance, it can find all elephants when there are multiple in
the scene, which is similar for banana, car and bicycle.
Visualizations of matching results (global view). In Fig-
ure 6, we visualize the matching results P ∗ ∈ RM×C w.r.t.
all labels (i.e., global view). We compare the proposed
KCOT and independent re-weighting, which is widely used
in previous works. Re-weighting distributes high-response
regions to most labels, which we refer as “extraneous high-
response” phenomenon. The reason is that it computes re-
gion weights for each label separately, inevitably produc-
ing some regions with higher weights for every label. In
contrast, our KCOT successfully focus on the matching to
target labels, facilitating precise and robust predictions.

3.7. Performance comparison
As shown in Figure 2, our method surpasses state-of-the-art
methods on six diverse datasets. Notably, previous meth-
ods achieve limited performance in specialized domains
such as PAR (i.e., PA100K-OV and RAP-OV) and RS (i.e.,
MultiScene-OV and MLRSNet-OV), while our method ex-
hibits robust performance across different domains.



Figure 4. Visualizations of unbalanced marginal ũ. Brighter color means higher weight. Best viewed in color.

Figure 5. Visualizations of matching results (individual view). Each row is the matching weight for one label. From top to bottom are
“elephant”, “skateboard”, “bench”, “clock”, “banana”, “bus”, “zebra”, “carrot”, “bicycle” and “car”, respectively.



KCOT (ours) Re-weighting

Figure 6. Visualizations of matching results (global view). The x-axis denotes the regions, and the y-axis corresponds to candidate labels.
Ground-truth labels are marked in red boxes. Brighter color means higher matching weight.
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