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1. Supplementary Video and
In our attached supplementary video, we include a brief and o1=25, 0y =08, 0,=06, 0=05 (2

intuitive overview of:

e The city-scale traffic simulation task.
e SceneDiffuser++ architecture and training process.
e Rollout videos of SceneDiffuser++ across long horizons.

We encourage the readers to watch our supplementary
video for a better understanding of the long simulation roll-
out quality from SceneDiffuser++.

2. Model Implementation Details

Architecture We use the same context encoder and
Transformer denoiser backbone architecture as SceneDif-
fuser [2]. Our scene encoder architecture uses 192 latent
queries. Each scene token is 512-dimensional, with 8 trans-
former layers and 8 transformer heads, with a transformer
model dimension of 512. We train and run inference with
all 128 agents.

Training To train SceneDiffuser++, we use the Adafactor
optimizer [3], with EMA (exponential moving average). We
decay using Adam, with 5, = 0.9, decay,,,,, = 0.9999,
weight decay of 0.01, and clip gradient norms to 1.0. We
use a train batch size of 1024, and train for 1.2M steps. We
select the most competitive model based on validation set
performance, for which we perform a final evaluation using
the test set. We use an initial learning rate of 3 x 1074,
We use 32 diffusion sampling steps. When training, we mix
the behavior prediction (BP) task with the scene generation
task, with probability 0.5. The randomized control mask is
applied to both tasks.

Feature Normalization To preprocess features, we use
scaling constants of % for features z,y, 2z, and compute
mean g and standard deviation o of features [, w, h.

We preprocess each agent feature f to produce normal-

ized feature [’ via f/ = ];:(’; ff , where:
=45, pw =20, upn=175 =05 (1)

We scale by twice the std o values to allow sufficient dy-
namic range for high feature values for some channels.

We conduct a similar feature normalization process for
traffic light features. Specifically, we use the same scaling
constants of % for features x,y,z. We also convert the
traffic light validity and one-shot state features to the range
of [—1, 1], similar to what we do for agent validity and type
features.

3. Additional Results

In Figures | and 2, we show more qualitative results of
SceneDiffuser++. Each row depicts a visualization of a 60-
second trip-level rollout of our model. Within each row, we
first show the full trip route overview (in the first column),
and then subsequently plot SceneDiffuser++’s predictions
at intervals corresponding to 0, 10, 15, 20 and 60 seconds
from the start of simulation.

4. Experiment Details

Validity Definition We define a valid timestep for an agent
as whether or not that agent appears in the AV’s detection
output at a particular timestep. The Entering (or Exiting)
Distance is the distance between an agent and the AV, in
meters, at the timestep it appears in the AV’s detection for
the first (or last) time.

Routing Implementation Details SceneDiffuser and
SceneDiffuser++ do not use goal-oriented routing; in other
words, they do not use or ingest a goal location in any way,
shape, or form. Fig. 1 depicts with a star the “trip end”
point, i.e. the final goal of the ADYV, but there is no de-
scription of how the model is conditioned with the goal.
This is because the main focus of this work is on the world
model, while we assume that the planner can utilize any
goal- or route-conditioned model for AV control. There-
fore, in our experiments we also do not define a goal or
progress-oriented metrics.
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Figure 1. Additional qualitative results of SceneDiffuser++. (From left to right) Snapshots of full 60s rollouts at 0, 15, 30, 45 and 60-second

timesteps.

When used as a planner, IDM explicitly searches for a
valid path for the AV from the start location to a randomly
selected goal location with a graph search algorithm on the
WOMD lane graph. Similarly, when used as a world model,
IDM searches for a path for every other agent.

For SceneDiffuser++, when used as a planner, we per-
form a route-unconditioned rollout in the mapped environ-
ment.

This is the same for all other agents when used as a world
model. In this way, agents controlled by any of these three
models follow a random path in the mapped environment,
making it possible for us to only compare the realism aspect
of the world models.

Traffic Light Transitions In order to quantitatively and
qualitatively analyze the realism of simulated traffic light
state transitions, we construct the traffic light transition
probability matrix for SceneDiffuser++ and compare it
against that of the ground-truth logs. We visualize the diag-
onals in Figure 8 of the main paper, and provide additional
details below. Specifically, WOMD' [1] contains 9 differ-
ent traffic light states: Unknown, Green/Red/Yellow Arrow,
Solid Green/Red/Yellow, and Flashing Red/Yellow. Specif-
ically, Unknown represents the case when the AV can ob-
serve the position of the traffic light, but cannot identify its
state due to occlusion. We would like the model to predict
only realistic traffic light state transitions, e.g. from Yellow

Int tps://waymo.com/open/data/motion/tfexample/

to Red, but not the other way around.

To compute the transition probability matrix, we count
all the consecutive timesteps where the traffic light state
changes from one state to a different state, and categorize
them based on the starting state and end state, accumulat-
ing counts in a 9 X 9 transition matrix. As we observe that
self-transitions from one state to itself are predominant, we
removed all the self-transition counts (i.e., the diagonal en-
tries on the transition matrix), and normalize the transition
matrix to probabilities. We obtain the matrix in Figure 8 by
computing an average over all scenarios in the validation
dataset. To compute the JS-divergence between the transi-
tion probabilities for a quantitative comparison, we directly
compute the JS-divergence between the ground-truth tran-
sition matrix and that produced by SceneDiffuser++. We
observe that SceneDiffuser++ produces very realistic traffic
light transitions.
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Figure 2. Additional qualitative results of SceneDiffuser++. (From left to right) Snapshots of full 60s rollouts at 0, 10, 15, 20 and 60-second
timesteps.



(3]

shrestha, John Lambert, Shuangyu Li, Xuanyu Zhou, Carlos
Fuertes, Chang Yuan, Mingxing Tan, Yin Zhou, and Dragomir
Anguelov. Scenediffuser: Efficient and controllable driving
simulation initialization and rollout. In NeurIPS, 2024. 1
Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learn-
ing rates with sublinear memory cost. In /ICML, 2018. 1



	. Supplementary Video
	. Model Implementation Details
	. Additional Results
	. Experiment Details

