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6. Implementation Details

6.1. Datasets

DroneSplat Dataset. DroneSplat Dataset is acquired with
a DJI Mavic Pro 3 drone. The drone-captured images have
two resolutions: 1920 × 1080 and 3840 × 2160. The
dataset contains 24 in-the-wild drone-captured sequences,
encompassing both dynamic and static scenes. The dy-
namic scenes feature a diverse range of moving objects, in-
cluding cars, trucks, tricycles, pedestrians, strollers, wind-
blown flags, etc. Furthermore, dynamic scenes are cate-
gorized into three levels based on the number of dynamic
objects in the training set: ”low dynamic” indicates scenes
with only 4-10 dynamic objects, ”medium dynamic” in-
cludes 10-50 dynamic objects, and ”high dynamic” refers
to scenes containing more than 50 dynamic objects.

Although previous 3D reconstruction datasets also have
drone-captured scenes, such as the drone in NeRF On-the-
go, their test images still contain dynamic distractors, which
can introduce ambiguity in metric evaluation. In contrast,
the test images in DroneSplat dataset’s dynamic scenes fea-
ture only static elements, enabling a more rigorous and pre-
cise evaluation of our method and the baselines (Figure 13).

The dataset will be released soon on our project page.
NeRF On-the-go Dataset [29] The NeRF On-the-go
dataset comprises 12 casually captured sequences, featur-
ing 10 outdoor scenes and 2 indoor scenes, with occlusion
ratios ranging from 5% to over 30%. The images in this
dataset are available in two resolutions: most are 4032 ×
3024 and a few are 1920 × 1080. To accelerate model train-
ing, NeRF On-the-go downsamples these resolutions by a
factor of eight and four, respectively, in its experiments.

In the NeRF On-the-go dataset, dynamic distractors are
typically limited in number (usually the data collector’s
companions) but may occupy a significant portion of the im-
age. In contrast, most scenes in the DroneSplat dataset con-
tain numerous dynamic distractors (like cars on the road),
but the proportion of dynamic distractors in the image is
relatively small. To validate the effectiveness and robust-
ness of our Adaptive Local-Global Masking method on
real-world data with diverse characteristics, we perform dy-
namic distractor elimination on six scenes from this dataset.

6.2. Adaptive Local-Global Masking.

Adaptive Local Masking. The role of Adaptive Local
Masking is to identify dynamic distractors in the training
image It at the current iteration t. Since the residuals across

Figure 12. Adaptive mask thresholding. The first row of images
shows the input training image and its corresponding segmenta-
tion result. The subsequent rows illustrate the Object-wise Aver-
age of Normalized Residuals and their corresponding histograms
at different iterations t. The red dashed line in the histograms rep-
resents the sum of the current normalized residual’s mathematical
expectation and one standard deviation. The black dashed line rep-
resents the local masking threshold finally selected.

different scenes and iterations can vary significantly, we
adaptively adjust the masking threshold based on the cur-
rent Object-wise Average of Normalized Residuals and sta-
tistical approaches.

A key observation is that, for the same image, the residu-
als of the static scene gradually decrease as t increases while
the residuals of dynamic distractors remain almost un-
changed. Furthermore, statistical analysis shows that both
the mathematical expectation and variance of the Object-
wise Average of Normalized Residuals for the image also
decrease over time. If dynamic distractors do not domi-
nate the scene, the mathematical expectation of the Object-
wise Average of Normalized Residuals declines rapidly as
the static scene converges. However, the presence of dy-
namic distractors causes the variance to decrease at a much
slower rate than the expectation.

As shown in Figure 12, whether in the DroneSplat
dataset, characterized by numerous small-area dynamic ob-
jects, or the NeRF On-the-go dataset, with fewer but larger
dynamic objects, nearly all static objects remain within one
standard deviation of the expectation, regardless of whether
it is the early training stage with higher residuals or the later
stage as residuals converge.



Figure 13. DroneSplat Dataset. Our dataset is captured in an uncontrolled wild environment by a drone, distinguishes itself from prior
3D reconstruction datasets by featuring numerous dynamic distractors with small area in each scene.

Complement Global Masking. The role of Complement
Global Masking is to identify the corresponding masks in
the context of the object with particularly high residual in
the current training frame. Specifically, we mark the ob-
jects with residuals higher than the threshold T G in the
Object-wise Average of Normalized Residuals as tracking
candidates (there can be multiple candidates in the same it-
eration). For each candidate, several points are selected as
prompts and fed into Segment Anything Model v2 [27] for
video segmentation.

As shown in Figure 14, we can obtain the high resid-
ual objects (the white car which is highlighted in yellow
in the residual image) that needs to be tracked based on
the Object-wise Average of Normalized Residuals and the
predefined global masking threshold. The blue box on the
right represents the tracking results, specifically the mask of
the tracked vehicle within the context. By combining these

tracking results with the global sets from the previous iter-
ation, we can obtain the updated global sets for the current
iteration.

Complement Global Masking is designed to address spe-
cific cases that Adaptive Local Masking cannot handle. For
example, as discussed in the main paper, when a vehicle
stops at a red light at an intersection, Adaptive Local Mask-
ing may fail to identify the stationary vehicle as a dynamic
distractor in those frames. Unsurprisingly, we observe that
lowering the global masking threshold T G enables Com-
plement Global Masking to independently and effectively
eliminate dynamic distractors. However, due to the sig-
nificant time cost of video segmentation, relying solely on
Complement Global Masking for dynamic object identifica-
tion would prolong the training process. Therefore, the opti-
mal performance is achieved by combining Adaptive Local
Masking with Complement Global Masking.



Figure 14. Complement Global Masking. At t = n, the white vehicle in the center of the image is marked as a tracking candidate due to
its residual exceeding the global masking threshold. The tracking results (blue masks) are then incorporated into the global sets from the
previous iteration t = n− 1 to update the global sets for the current iteration.

6.3. Voxel-guided Gaussian Splatting.

Multi-view Stereo. DUSt3R [35] is a learning-based
framework that takes image pairs as input and outputs cor-
responding dense point clouds. A post-processing is then
used to align the scale across different pairs and obtain a
global point cloud. However, as the number of input images
increases, the number of image pairs also grows, signifi-
cantly increasing GPU memory consumption during post-
processing. Consequently, the vanilla DUSt3R framework
is not well-suited for handling in-the-wild scenes with a
large number of images.

To address this issue, we optimize the pipeline by intro-
ducing a progressive alignment strategy. Specifically, we
divide all images into batches. Suppose there are b × N
images in total, divided into b batches, each containing N
images. We first input the N images from the first batch
into DUSt3R to generate pair-wise point clouds, followed
by post-processing to obtain the aligned point clouds (de-
noted as P1) and the corresponding camera parameters C1.
Next, we take the last N/2 images from the first batch and
the first N/2 images from the second batch, inputting them
into DUSt3R for pair-wise point cloud prediction, where the
poses of the first N/2 images are fixed using C1. Through
post-processing, we obtain the aligned point clouds for the
second batch (denoted as P2) and the camera parameters
C2. Note that P1 and P2, as well as C1 and C2, share
N/2 overlapping elements, so the duplicated N/2 must
be removed when merging the outputs of the two batches.
Each batch undergoes the aforementioned process, finally
resulting in a globally aligned point cloud assembled from
multiple batches, along with all corresponding camera pa-
rameters. Incorporating the progressive alignment strategy,

DUSt3R can handle any number of images by adjusting the
number of images per batch.

Geometric-aware Point Sampling. The multi-view stereo
method provides rich scene geometry priors, and the num-
ber of points in the dense point cloud produced by DUSt3R
is still very large even with limited viewpoints. Taking
a resolution of 1920 × 1080 as an example, the images
will be automatically resized to 512 × 288 when input into
DUSt3R, and using just six images yields a point cloud con-
taining over 800,000 points. Directly using such a large
number of points to initialize Gaussian primitives makes the
vanilla optimization strategy ineffective, as each pixel influ-
enced by an excessive number of similar Gaussians, leading
to suboptimal reconstruction quality.

Therefore, we propose a geometric-aware point cloud
sampling method. The entire scene is divided into smaller
voxels, and for each voxel, only a certain number of points
are retained for 3DGS initialization, selected based on their
geometric features and confidence score. As shown in Fig-
ure 16, the sampled point cloud retains the geometric pri-
ors, preserving the scene’s overall structure. Meanwhile,
the number of points is significantly reduced, from over
800,000 to fewer than 100,000. This reduction allows the
3DGS’s densification process to fully leverage its remark-
able representational capabilities. Notably, the importance
of the point sampling method becomes particularly evident
when the number of input images increases and overlap re-
gions expand. In such cases, DUSt3R’s output may exhibit
aliasing, for example, there are many layers of close-fitting
ground and walls,, which can severely impact 3DGS’s per-
formance. The sampling method effectively mitigates these
issues, ensuring high-quality initialization.



Figure 15. The effect of point sampling. Compared to the origi-
nal point cloud (a), the sampled point cloud (b) also provides suf-
ficient geometric priors using only a fraction of the points.

Voxel-guided Optimization. The role of Voxel-guided Op-
timization is to overcome the challenge of unconstrained
optimization in 3DGS under limited viewpoints. As illus-
trated in Figure 16, when a drone flies over a street with a
fixed posture, the angle between the camera and the ground
remains nearly constant (a). Using the original 3DGS op-
timization results in uncontrolled Gaussian expansion and
drifting. Specifically, the unconstrained Gaussian moves to-
ward the camera, which will cause floating Gaussians in the
air (b). However, this does not affect optimization for the
training views, it highlights a limitation: the Gaussians lack
sufficient constraints under limited viewpoints when relying
solely on the original optimization.

Our proposed Voxel-guided Optimization addresses the
issue of unconstrained optimization by restricting Gaus-
sians within a defined space. Leveraging the rich geometric
priors provided by multi-view stereo, we achieve basic over-
lay of the scene in Gaussian initialization. As mentioned in
the main paper, Gaussians that exceed the voxel restricted
boundary are identified as unconstrained and have their gra-
dients reduced. Figure 16 (c) demonstrates the effectiveness
of our approach. There are no more floating Gaussians in
the air, and the surface of the building is reconstructed more
accurately. Notably, Voxel-guided Optimization does not
interfere with the original optimization process.

Among all the hyperparameters in Voxel-guided Opti-
mization, the most critical is τ , which controls the voxel
constraint boundary. A value of τ that is too small prevents
Gaussians from adequately fitting the scene, while a value
that is too large weakens the voxel’s constraint on Gaussian
optimization. In practice, we find that setting τ between 3
and 4 strikes an effective balance, enabling accurate Gaus-
sian fitting while maintaining sufficient constraints.

Figure 16. The effect of Voxel-guided Optimization. Compared
to the vanilla optimization, our voxel-based optimization strategy
ensure accurate scene geometry. Notably, both (b) and (c) repre-
sent the visualization of Gaussians, not the rendering results.

7. Additional Experiments
7.1. Ablation Study

As shown in Table 1, dense point clouds provide a strong
geometric prior, accelerating convergence and reducing
overall reconstruction time. While initialization of dense
points requires more memory, final memory usage and
model size remain comparable to sparse point clouds.

As shown in Table 2, among all the designed modules,
local masking requires the longest processing time while
also providing the most significant performance improve-
ment. Furthermore, although the training time on the 3090
is slightly longer compared to the A100 and 4090, it re-
mains within an acceptable range.

Table 1. Impact of initial points on memory Usage, training
time, model size, and PSNR. We conduct the experiments on
DroneSplat (static) dataset. For each scene, row 1: COLMAP;
row 4: DUSt3R; rows 2-3: DUSt3R downsampled points.

Scene
Init Memory Training Final

PSNR↑
Points Usage Time Size

Hall

15426 8.17GB 7.72m 667.69MB 15.61
47489 8.32GB 6.73m 729.29MB 16.48

237446 8.67GB 6.53m 802.16MB 17.92
1187233 9.21GB 7.33m 973.62MB 17.63

Plaza

11991 6.74GB 6.67m 481.16MB 16.38
43885 6.03GB 5.75m 496.41MB 16.74

219429 6.12GB 5.57m 546.73MB 17.98
1097146 7.45GB 6.58m 752.92MB 17.73



Figure 17. Qualitative results on DronSplat dataset (dynamic) with limited views. Each scene contains only six input views

Table 2. Ablation study of training time for different mod-
ules across three GPU platforms. We conduct the experiments
on Simingshan and Sculpture of DroneSplat (dynamic) dataset.
For comparison, WildGaussians requires 472 minutes for training,
while GS-W takes 138 minutes.

Local Global Dense Voxel-guided Traing Time

Masking Masking Points Optimization A100 4090 3090

✗ ✗ ✗ ✗ 7.02m 5.13m 9.63m
✓ ✗ ✗ ✗ 15.30m 14.01m 19.87m
✓ ✓ ✗ ✗ 18.25m 15.83m 25.93m
✓ ✓ ✓ ✗ 16.50m 14.77m 21.70m
✓ ✓ ✓ ✓ 16.62m 14.83m 22.18m

7.2. Performance on Two Challenges

In the main paper, we separate the two challenges of scene
dynamics and viewpoint sparsity, and compare them with
the most advanced methods in the corresponding fields. Our
consideration is that DroneSplat is the only framework ca-
pable of tackling both challenges currently. However, to
demonstrate the superiority and robustness of our approach
in tackling these two challenges simultaneously, we select
two representative scenes from the DroneSplat dataset, Sim-
ingshan and Sculpture, to conduct comparative studies on
non-static scene reconstruction with limited views. Each
scene includes only six input views.

We compare the best-performing baselines from the Dis-
tractor Elimination and Limited-View Reconstruction ex-
periments for non-static scene reconstruction with limited
views. As shown in Table 3 and Figure 17, our method
outperforms the baselines in both scenes. NeRF-HuGS [1],
GS-W [45] and WildGaussians [14] fail to effectively elim-
inate dynamic distractors under sparse-view conditions.

Table 3. Quantitative results on DronSplat dataset (dynamic)
with limited views. The 1st , 2nd and 3rd best results are
highlighted.

Method
Simingshan Sculpture

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

FSGS [ECCV’24] 19.97 0.632 0.307 16.55 0.373 0.312
Scaffold-GS [CVPR’24] 19.59 0.637 0.197 16.04 0.321 0.301

NeRF-HuGS [CVPR’24] 20.41 0.656 0.236 16.89 0.249 0.458
GS-W [ECCV’24] 19.21 0.602 0.292 14.84 0.269 0.329
WildGaussians [NIPS’24] 18.91 0.582 0.286 15.58 0.255 0.409
Ours 22.46 0.728 0.156 18.39 0.427 0.253

8. Limitations and Future Work

Our framework leverages effective heuristics and the pow-
erful capabilities of the segmentation model. However, it
does have certain limitations in some cases. Firstly, in the
video segmentation of Complement Global Masking, we
track high-residual objects within their context. In prac-
tice, we find that tracking small objects is often unreliable,
and tracking errors can sometimes lead to suboptimal re-
sults. A potential improvement could involve adding a post-
processing to extract features of the tracked targets and filter
out results with significant feature discrepancies.

In addition, our approach eliminates the influence of dy-
namic objects on static scene reconstruction by identifying
and masking them. However, if a region is consistently oc-
cupied by dynamic distractors, it may lead to underfitting
in the reconstruction. To address this, another possible im-
provement could be the integration of diffusion models to
inpaint such regions.

9. Additional Qualitative Results

We additionally show the visualization results of our com-
parison experiment (Sec 4.2).



9.1. DroneSplat Dataset (dynamic)

As shown in Figure 18, NeRF-based methods, such as Ro-
bustNeRF [30] and NeRF On-the-go [29], eliminate dy-
namic objects in the scene but lack detail, sometimes even
missing parts of the scene. A typical example is the pavil-
ion scene, where RobustNeRF and NeRF On-the-go suc-
cessfully remove dynamic pedestrians but fail to reconstruct
certain areas accurately, such as the missing the pillars of
the pavilion. GS-W [45] and WildGaussians [14] perform
poorly in the presence of numerous dynamic distractors,
failing to eliminate them effectively. In contrast, our method
not only effectively removes dynamic objects but also pre-
serves fine scene details with high fidelity.

9.2. NeRF On-the-go Dataset

Compared to our DroneSplat dataset (dynamic), the NeRF
On-the-go dataset [29] features a greater number of view-
points, with some scenes exhibiting higher levels of occlu-
sion. As shown in the figure 19, NeRF-HuGS [1] strug-
gles to handle highly occluded scenes, resulting in blurring
and artifacts. While WildGaussians [14] effectively elim-
inates dynamic distractors and preserves scene details in
most cases, it produces inaccurate reconstructions in areas
with sparse viewpoints, such as the roadside in the fountain
scene. Our method demonstrates superior and robustness
performance in handling varying levels of occlusion com-
pared to existing approaches.

9.3. DroneSplat Dataset (static)

To simulate the challenges encountered in practical use, the
experimental scenes we select have small overlap between
viewpoints. As shown in the figure 20, leveraging rich ge-
ometric priors and the Voxel-guided Optimization strategy,
our method reconstructs geometrically accurate scenes even
under limited views constraint.

9.4. UrbanScene3D Dataset (static)

The results and conclusions are similar to those on the
DroneSplat dataset (static).



Figure 18. Qualitative results of distractor elimination on DronSplat dataset (dynamic).



Figure 19. Qualitative results of distractor elimination on NeRF On-the-go dataset.



Figure 20. Qualitative results of limited-view reconstruction on DronSplat dataset (static) and UrbanScene3D dataset.


