
GAF: Gaussian Avatar Reconstruction from Monocular Videos
via Multi-view Diffusion

Supplementary Material

In this supplementary material, we provide additional in-
formation about the dataset in Sec. A. Subsequently, we
present more detailed explanations about method imple-
mentations in Sec. B, including parametric head tracking
and multi-view head diffusion. Following that, we show-
case the results of our multi-view head diffusion results in
Sec C. Next, we provide additional comparisons in Sec D,
including novel view synthesis, self-/cross-reenactment,
and robustness analysis. Finally, we discuss the ethical con-
siderations and potential negative impacts in Section E.

A. Dataset

Smartphone Video Capture. We capture monocular video
sequences using an iPhone 14 Pro. The subject is seated in
a chair, and the room lights are turned on during the record-
ing, providing adequate illumination. The duration of the
recording is about 10-15 seconds, at 30 frames per second.
The image resolution is 1280 × 720.

Data preprocessing. To simplify the optimization pro-
cess for animatable Gaussian splats, we integrate two pre-
processing steps on raw images extracted from monocular
videos. Firstly, we leverage the image matting techniques
proposed in [5, 6] to remove the background. More specifi-
cally, we use [6] for our smartphone video capture, while we
adopt [5] for the NeRSemble [2] dataset, where the initial
background image is provided. Secondly, we utilize face
segmentation maps acquired from BiSeNet [13] to isolate
and crop out the torso portion, thus concentrating solely on
head reconstruction. An example of our image preprocess-
ing pipeline is illustrated in Fig. 1.

Train-Test Split. In the NeRSemble dataset, we use
monocular videos from the 8-th camera as the input, only
capturing the head from the front view. we evaluate head
avatar reconstruction and animation quality in two settings:
1) novel view synthesis: driving a reconstructed avatar with
seen head poses and expressions during training, and ren-
dering it from 15 hold-out viewpoints. 2) novel expression
synthesis: driving a reconstructed avatar with unseen head
poses and expressions during training, rendering it from
5 nearby hold-out views, i.e. cameras 6–10. In Tab. 1,
we provide detailed statistics about the used sequences in
Nersemble and train/val/test split.

The statistics of the monocular video data are summa-
rized in Tab. 2. Since monocular videos captured on com-
modity devices lack corresponding ground truths for novel
view renderings, we only evaluate avatar animation perfor-
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Figure 1. Data capture and processing of monocular videos
from smartphones. We capture a short video using an iPhone
14 Pro. From the raw images, we remove the background using
image matting techniques and segment out the torso to focus on
the head region.

#Sequence Names
#timesteps ×#cams

Train Novel view Novel expression

017 EXP-5 208× 1 208× 15 52× 5

037 EXP-8 203× 1 203× 15 50× 5

055 EMO-4 105× 1 105× 15 26× 5

074 EXP-5 179× 1 179× 15 44× 5

134 EMO-1 79× 1 79× 15 19× 5

165 EXP-8 189× 1 189× 15 47× 5

221 EXP-5 147× 1 147× 15 36× 5

251 EMO-1 51× 1 51× 15 12× 5

264 EMO-1 75× 1 75× 15 18× 5

304 EMO-1 127× 1 127× 15 31× 5

417 EMO-4 124× 1 124× 15 31× 5

460 EXP-4 124× 1 124× 15 30× 5

Table 1. Statistics of the train/val/test splits used for NeRSem-
ble sequences. For each sequence, we use 80% of timesteps
for the training and validation datasets. We select the 8th cam-
era (front-facing) for the train split, while all remaining cameras
are used for novel-view evaluation (validation set). The novel-
expression evaluation is conducted by selecting 5 nearby cameras
for the remaining 20% of timesteps (test set).

mance in the quantitative comparisons, by applying pose
and expression parameters from those unseen frames dur-
ing training.



#Sequence Names
#timesteps

Train Test

wojteck-1 760 2678

person0004 450 1050

subject1 229 48

subject2 312 83

subject3 139 34

subject4 440 154

Table 2. Statistics of the train/test splits used for the Monocular
Video dataset. To effectively evaluate the ability of our method
to represent unseen regions of the head, we select training frames
with limited head rotation. The remaining frames, which contain
unseen poses and expressions, are used as the test set.

B. Implementations

B.1. Monocular Head Tracking

We track the FLAME [4] parameters using the VHAP-
tracker [1] proposed in [8]. Given a monocular video we
optimize both shared parameters (shape, albedo map, dif-
fuse light) and per-timestep parameters (pose, translation,
expression). The tracking algorithm is divided into three
stages: (i) initialization stage; (ii) sequential optimization
stage; (iii) global optimization stage. The tracking process
begins with an initialization stage, performed on the first
frame of the video, which sets up all the aforementioned pa-
rameters. Following this, a sequential optimization stage is
applied to each successive frame of the video. In this stage,
the parameters of each frame are optimized for 50 itera-
tions, using the previous timestep as initialization. Finally,
the tracking parameters are refined through a global opti-
mization stage, where a random frame is sampled at each
iteration, for a total of 30 epochs.

The tracking is performed by minimizing a combination
of multiple energy terms: (i) a photometric energy term,
computed between the rendered image and the ground-truth
one; (ii) a landmarks energy term, which computes the
distance between the projected 2D FLAME [4] landmarks
and the 2D landmarks predicted by an off-the-shelf detec-
tor [15]; (iii) temporal energy terms, applied on the per–
timestep parameters, which ensure smoothness over time;
(iv) regularization energy terms, applied on all FLAME [4]
parameters. We revised the loss weights for the smooth-
ness terms as: λsmooth,transl = 3e4, λsmooth,rot = 3e3,
λsmooth,jaw = 4.0, λsmooth,eyes = 1.0, λsmooth,expr =
0.5. For all the remaining hyper-parameters we refer to the
original work [1].

We use NVDiffRast [3] as the differentiable mesh ren-
derer and the FLAME 2023 version [4] with the additional

168 triangles to represent the teeth, as proposed by [8].

B.2. Multi-view Latent Head Diffusion
In Fig. 2, we show the network architecture details of our
multi-view head latent diffusion. The denoiser network is
based on a 2D U-Net [9] with attention blocks [11]. The U-
Net comprises four Down Blocks, one Middle Block, and
four Up Blocks. Each Down Block contains a Residual
block, a 3D Attention block, and a Downsampling layer.
The Middle Block is composed of a Residual block and a
3D Attention block. The Up Block mirrors the Down blocks
but with Upsampling layers.

B.3. Gaussian Regularizations
The position regularization term ensures that Gaussians re-
main close to their attached triangles during optimization
through:

Lpos = ∥max(µ, ϵpos)∥2 (1)
where ϵpos = 1 serves as the threshold, allowing small posi-
tional errors within the scaling of the attached triangle. The
scale regularization term mitigates the formation of large
Gaussians, which could lead to jittering problems due to
small rotations of triangles.

Lscale = ∥max(s, ϵscale)∥2 (2)
It will be disabled when the local scale of the Gaussian w.r.t
the attached triangle is less than ϵpos = 0.6.

B.4. Ablation Studies of Gaussian Avatars Fusion
In the main paper, we evaluate various diffusion priors for
novel view constraints, demonstrating the effectiveness of
our face-specific multi-view diffusion priors for 3D Gaus-
sian head reconstruction from monocular videos. Here, we
provide additional details on the implementation of our ab-
lation studies. We use six sequences from the NeRSemble
dataset, including ’055 EXP-5’, ’098 EMO-1’, ’134 EMO-
1’, ’165 EMO-1’, ’221 EXP-8’, and ’417 EMO-4’.
No diffusion. This variant does not apply any priors to
constrain novel view renderings. It is implemented using
GA [8] with SH =0.
Pretrained Stable Diffusion. This variant randomly ren-
ders a novel view at each iteration and refines it using Sta-
ble Diffusion 2.1, guided by ControlNet [14] with normal
maps. The iteratively denoised images serve as pseudo-
ground truths.
Personalized Stable Diffusion. Instead of using a pre-
trained model, this variant employs DreamBooth [10] to
fine-tune the U-Net and text encoder with a learning rate
of 5e−6 for 500 iterations. The iteratively denoised images
are used as pseudo-supervision.
Pose-conditioned multi-view diffusion. This variant uses
pose embedding-conditioned multi-view diffusion models
to generate pseudo-ground truths.
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Figure 2. Network architecture of our multi-view head latent diffusion model. The denoiser network is built on a 2D U-Net architecture
with attention blocks. The input consists of multi-view image latents concatenated with VAE latents of normal maps rendered from the
FLAME mesh. The 3D Attention block enforces 3D consistency by applying cross-attention across all views. It also incorporates the input
image latent into the denoising process, effectively preserving the identity and appearance details of the input portrait.

Raymap-conditioned multi-view diffusion. This variant
uses ray map-conditioned multi-view diffusion models to
generate pseudo-ground truths.
Our multi-view diffusion using Score Distillation Sam-
pling (SDS) loss. Instead of using iteratively denoised im-
ages as pseudo-ground truths, this variant employs SDS
loss [7] based on single-step denoising.
Ours without latent upsampler ×2. We remove the pre-
trained latent upsampler ×2. Then the resolution of pseudo
ground truths is 256×256.
Ours without 3D-aware denoising. The pseudo-ground
truths generated by diffusion models rely on multi-view ren-
derings of 3D Gaussian avatars, embedding 3D awareness
into the diffusion process. To eliminate this 3D awareness,
we set the time step to 0 when adding noise. Comparisons
in Tab. 3 demonstrate the benefits of 3D-aware denoising.

Method Novel Views Novel Expressions

LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑

Ours, w/o 3D-aware 0.119 21.52 89.71 0.079 25.20 91.99
Ours final 0.118 21.82 89.87 0.079 25.39 92.02

Table 3. Ablation study of 3D-aware denoising.

C. Results of Multi-view Head Diffusion
In Fig. 3, we showcase the sampling results from our multi-
view head diffusion model. The model generates four
view-consistent images from a single input image while ef-
fectively preserving facial identity and appearance. This
demonstrates the model’s capability to synthesize coherent
and identity-preserving novel views.

D. Additional Comparisons
D.1. NeRSemble Dataset
In Fig. 4, we provide additional qualitative comparisons on
dynamic head avatar reconstruction from monocular videos
sampled from NerSemble dataset [2].

D.2. Monocular Videos on Commodity Devices
In Fig. 5, we provide additional qualitative comparisons
against INSTA [16], FlashAvatar [12], and GA [8] on
monocular videos captured by commodity devices.

D.3. Self- & Cross-Reenactment
We show the self and cross reenactment results of our
method and Gaussian Avatars in Fig. 6 and 7.

D.4. Robustness Analysis
To demonstrate the robustness of our method with sparse
input data, we evaluate reconstruction performance across
different frame numbers in the input video. We use the ’104
EMO-1’ sequence from the NeRSemble dataset, which con-
tains 56 frames in the input. To reduce the frame count, we
sample keyframes at uniform intervals. For instance, for an
8-frame input, we select frames at timesteps 0, 7, 14, 21,
28, 35, 42, and 55; for a single-frame input, we use only
the 28th frame. As shown in Fig. 9 , our method can main-
tain stable quantitative performance with as few as 8 frames,
while GaussianAvatars drops dramatically. This highlights
the resilience of our method to limited observations.

In Fig. 9, we present qualitative results from a robust-
ness analysis conducted with varying numbers of frames
in the input monocular videos. Our approach consistently
achieves photorealistic novel view rendering across various
sequence lengths, even with only 8 frames as input.
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Figure 3. Generation sample results of the multi-view head latent diffusion model. Given a single image as input, our method can
generate identity-preserved, view-consistent multi-view portrait images.
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Figure 4. Additional results on novel view synthesis from monocular videos from the NeRSemble dataset. Our method demonstrates
robust reconstruction of less observed regions (e.g., side facial areas), maintains facial identities across viewpoints, and consistently pro-
duces more plausible and view-consistent renderings from hold-out views.

Input GT GA OursINSTA FlashAvatar

(a) Input (b) GT (c) INSTA (d) FlashAvatar (e) GA (f) Ours

Figure 5. Additional comparisons of head avatar reconstruction from monocular videos on commodity devices. We present novel
expression animation results using unseen frames from the monocular videos during training. Additionally, we display the fitting results
for the input frame (top right) and novel view renderings of the same frame (bottom right). While all methods accurately fit observed
frames in front-facing sequences with limited head poses, baseline methods fail to generalize to novel views and poses due to the absence
of effective priors for less unobserved regions.

E. Ethical Discussion and Negative Impacts

The creation of photorealistic and animatable head avatars
from an input video poses several ethical challenges and
significant risks related to the possible malevolent usage of
this technology. One major concern is the potential for mis-

use in creating deepfakes, which are highly realistic but fake
videos that can be used to spread misinformation, manipu-
late public opinion, or damage reputations. Additionally,
this technology can lead to privacy violations, as individu-
als’ likenesses can be replicated without their consent, lead-



(a) Driving Expression (Ground truth) (b) Gaussian Avatars (c) Ours

Figure 6. Self-reenactment from monocular videos on the NeRSemble dataset. We use the tracked FLAME pose and expressions
of a driving sequence to animate the reconstructed Gaussians. We show three novel view renderings for each reenactment result. Our
method demonstrates more plausible head animations through more detailed face reconstruction, such as wrinkles, and faithfully produces
view-consistent head renderings from different novel viewpoints.

(a) Driving Expression (Reference) (b) Gaussian Avatars (c) Ours

Figure 7. Cross-reenactment from monocular videos on the Nersemble dataset. We show three novel view renderings for each reen-
actment result. Our method outperforms Gaussian Avatars by showcasing more vivid expression transfers and more plausible renderings
around the mouth.

Figure 8. Robustness analysis to the number of frames in the input monocular video.
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Figure 9. Robustness analysis to the number of frames in the input monocular video. (a) Input view (top) & Ground truth (bottom);
(b) 56 frames; (c) 40 frames; (d) 24 frames; (e) 16 frames; (f) 8 frames; (g) 1 frame. Compared to GaussianAvatars [8], our method demon-
strates robust reconstruction of novel view synthesis even with as few as eight frames, highlighting its robustness to limited observations.

ing to unauthorized use in various contexts. There is also
the risk of identity theft, where malicious actors could use
these avatars to impersonate others for fraudulent activities.
Moreover, the psychological impact on individuals who see
their digital likeness used inappropriately can be profound,
causing distress and harm. Our commitment is to promote
the responsible and ethical use of this technology, and we
are firmly against any malicious usage that aims to harm
individuals or communities.
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