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We provide more details and a discussion of the main paper.

A. More Ablation Study

Table | presents additional ablation analyses for our Predi-
CIR model. In models ‘1-3’, we assessed the impact
of varying crop sizes for constructing source and tar-
get views. Using different crop sizes, unlike the consis-
tent size in model ‘1’, results in significant performance
degradation. This decline is attributed to discrepancies in
position embeddings between the source and target views,
which complicate the model’s ability to predict features spa-
tially aligned with the reference image. In models ‘4-6’,
we explored the effects of different aspect ratios. Alter-
ing the aspect ratios, whether increasing (model ‘5’) or de-
creasing (model ‘6’), led to an average performance decline
of 2.30% and 3.22%, respectively, underscoring the sen-
sitivity of model performance to aspect ratio adjustments.
In models ¢7-11°, we further evaluated the impact of al-
ternative solutions for key modules. The results demon-
strate that omitting our dynamic cropping strategy (model
‘8’) or excluding reference image features in gating, which
solely predicts the entire target image (model ‘9’), resulted
in average performance reductions of 4.12% and 3.50%,
respectively. This confirms the critical role of our strate-
gies in maintaining model efficacy. Additionally, attempt-
ing to predict multiple target views from a single source
view (model ‘10’) also led to an average performance de-
cline of 2.40%, further validating the effectiveness of our
targeted cropping strategy. Using a Faster R-CNN detector

CIRR Fashion-1Q

Methods Rl R5 RI0O RI10 RS0
Influence of different crop sizes for world view generation
1. Source:(0.2,0.25), Target:(0.2,0.25) 27.2 57.0 70.2|30.1 523
2. Source:(0.15,0.2), Target:(0.2,0.25) 24.7 53.9 66.2 | 255 48.1
3. Source:(0.2,0.25), Target:(0.15,0.2) 25.3 548 67.1 | 26.8 49.4
Influence of aspect ratios
4. aspect ratios: (0.75,1.5) 272 570 702301 523
5. aspectratios: (1.0,1.5) 257 550 675|272 499
6.  aspect ratios: (0.75,1.0) 250 542 664|263 488
Influence of different crop strategies
7.  single-blocks 272 570 702 |30.1 523
8. w/o dynamic crop strategy 238 54.1 66.8 255 46.0
9. w/o source 245 547 67.0|259 472
10. multi-blocks 256 552 674|272 494
11. semantic-aware crop strategy 247 551 674|248 453

Table 1. More ablation study on CIRR and FashionlQ.

on CC3M for semantic-aware cropping (model ‘11°), which
resulted in a 3.90% performance decrease on CIRR and
FashionlQ. While this strategy preserves object boundaries,
it limits the diversity of training samples, particularly for
fine-grained attribute manipulations like FashionIQ (drops
by 6.15%). In contrast, our simple but effective random
cropping strategy ensures richer and more variable training
samples, benefiting the predictive world model despite pos-
sible inappropriate bboxs, which aligns with prior findings
(e.g., MAE [13], I-JEPA [1, 18]).

B. More Effectiveness and Efficiency Analysis
B.1. GeneCIS full results

In Table 2, we report the full table of GeneCIS results.

B.2. Comparison with fewer training samples.

In Table 2-7, we present more evidence supporting the ef-
ficacy and efficiency of our PrediCIR. With only 50% of
the training data, PrediCIR matches and exceeds the perfor-
mance of the state-of-the-art (SoTA) Context-I2W model,
proving our method’s superiority.

C. Visualization of Predictor Representations

In Figure 1, we leverage the RCDM framework to visualize
more samples of our PrediCIR’s predicted target image fea-
ture into pixel space (Please refer to Section G.1) for more
details). The prediction effectively identifies the missing vi-
sual content in the reference images based on manipulation
texts (e.g., a Papa Smurf print, a dog not eating, a mon-
key in origami style, and a dog facing the camera). This
pattern remains consistent, proving our predictor’s ability



Query

is a t-shirt with Papa
Smurf logo on front

L It's a smaller dog
and is not eating

Origami

is a T-shirt with
outdoors scene
on the front

Make dog to sleep
and remove object
from its mouth

Sculpture

. Make the dog face
to the camera

Cartoon

Figure 1. Visualization of our predictor representations. Green bounding boxes contain samples from a generative model decoding the
output of our pretrained predictor.



GeneCIS — ‘ Focus Attribute Change Attribute Focus Object Change Object ‘ Average
Backbone ‘ Method ‘ R@l R@2 R@3 R@! R@2 R@3 R@]! R@2 R@3 R@]! R@2 R@3 ‘ R@1
SEARLE 17.1 296 407 163 252 342 120 222 309 120 241 339 14.4
VIT-L/14 LinCIR 169 300 415 162 280 368 83 174 262 74 157 250 12.2
Context-12W 172 305 417 164 283 371 87 179 269 717 16.0 254 12.7
PrediCIR(50%) 177 314 422 178 293 354 107 184 290 125 206 29.8 14.7
PrediCIR(100%) | 18.2 319 42,6 187 304 354 127 190 312 169 255 341 16.6
LinCIR 191 330 423 176 302 381 101 19.1 281 79 163 257 13.7
ViT-G/14* | CompoDfff 143 267 384 197 288 374 9.2 19.1 258 187 317 402 15.5
PrediCIR 193 332 427 199 307 389 128 194 323 189 322 40.6 18.7

Table 2. Comparison on GeneCIS Test Data. PrediCIR is able to significantly outperform adaptive methods across all Fashion-1Q sub-
benchmarks, with its inherent modularity allowing for further simply scaling to achieve additional large gains. (*) OpenCLIP weights [16].

Dress Shrit TopTee Average
Backbones Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50
Pic2Word CVPR 2023 20.0 40.2 26.2 43.6 27.9 47.4 24.7 43.7
SEARLE-XLT ICCV 2023 20.3 432 27.4 45.7 29.3 50.2 25.7 46.3
VIT.L/14 LinCIRT CVPR 2024 20.9 424 29.1 46.8 28.8 50.2 26.3 46.5
! Context-I2WT AAAI 2024 23.1 453 29.7 48.6 30.6 52.9 27.8 48.9
PrediCIR(50%) - 24.2 47.8 30.8 50.2 31.9 54.3 29.0 50.8
PrediCIR(100%) - 254 49.5 31.8 52.0 331 554 30.1 52.3
CompoDifft TMLR 2024 37.8 49.1 41.3 552 443 56.4 39.0 51.7
ViT-G/14 LinCIRf CVPR 2024 38.1 60.9 46.8 65.1 50.5 71.1 45.1 65.7
PrediCIR - 39.2 61.8 47.1 67.0 52.5 72.8 46.3 67.2

Table 3. Results on Fashion-IQ for attribute manipulation. Tindicates results from the original paper.

Query Ours

Context-12W

person, snow, sun,
light, sky, ice, footprint

b

— computer, beg, wall,

window, light

Figure 2. Retrieved results on the object composition task.

train, railway,
blinker, sky, smoke,
tree, sign

to capture positional uncertainty and generate high-level vi-
sual elements (e.g., objects, senses, attributes, and differ-
ent details) with accurate poses. These results highlight the
model’s capacity for fine-grained visual content prediction,
which is crucial for accurate ZS-CIR.

D. More Qualitative Experiment on COCO

In the object composition experiments, PrediCIR signifi-
cantly outperforms the current SOTA model by an average
of 3.60%. These results underscore the remarkable effec-
tiveness of our TCP module in predict missing objects rele-
vant to manipulation text, which facilitates the combination
of multiple objects, as shown in Figure 2.

E. Algorithm of Prediction-based Word Map-
ping Process.

Algorithm 1 presents the pseudo-code for our prediction-
based image-to-word mapping process. We initiate the pro-
cess by creating mask tokens for a target block. The mask
tokens are parameterized by a shared learnable vector with
an added positional embedding. These mask tokens are de-
signed to predict the visual content missing in the refer-
ence image. These mask tokens are subsequently fed into a
narrow Transformer architecture, which incorporates source
local features and the action with manipulation intent to per-
form self-attention. To achieve a dynamic ratio during the
fusion of source and predict embeddings, we utilize a tanh-
gating mechanism [15].

F. Review of Image World Model
F.1. JEPA Framework Overview

The Image World Model IWM) [10]. builds upon the Joint
Embedding Predictive Architecture (JEPA) framework [18],
as utilized in approaches like I-JEPA [1]. In JEPA-based
methods, representations are learned by predicting the ef-
fect of transformations applied to an image in a latent space.
This is achieved by conditioning the predictor on transfor-
mation parameters, allowing it to infer the relationship be-
tween source and target representations effectively.

Unlike contrastive methods that aim for invariance to



Cartoon Origami Toy Sculpture Average
Backbones Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50 R10 R50
Pic2Word? CVPR 2023 8.0 219 13.5 256 8.7 216 | 100 238 101 232
SEARLE-XL ICCV 2023 9.6 24.9 161 273 7.6 254 113 264 112 260
VIT-L/14 LinCIR CVPR 2024 9.4 242 | 157 269 108 270 | 117 279 | 119 265
i Context-I2W1 AAAT 2024 102 261 175 287 1.6 274 121 282 129 276
PrediCIR(50%) - 14 275 182 314 | 130 284 13.1 30.6 139 295
PrediCIR(100%) - 142 319 | 204 343 | 147 308 | 163 349 | 164 330
VITG/14 LinCIR CVPR2024 137 302 | 195 329 138 302 | 152 340 | 155 318
" PrediCIR - 156 346 | 237 372 | 172 35 | 193 378 | 190 368
Table 4. Results on ImageNet for domain conversion. findicates results from the original paper.
Backbones Methods R1 RS R10 powerful tool for learning representations that are both se-
Pic2Word' 239 517 65.3 mantically meaningful and capable of generalization.
SEARLE-XLT 242 524 66.3
) LinCIRT 25.0 533 66.7
VIT-L/14 Context.2W 556 P 685 F.2. Image World Model (IWM)
PrediCIR(50%) 263 55.7 69.2
PrediCIR(100%) | 272 570 702 IWM extends the JEPA framework to learn robust and
CompoDift" %7 551 745 reusgble w.oﬂd models. The predictor in IWM serves as
VIT-G/14 LinCIR' 353 64.7 76.1 the instantiation of the world model, capable of applying
PrediCIR 366 657 716 transformations in latent space. Unlike invariant predictors,

Table 5. Results on CIRR for object manipulation. Tindicates re-
sults from the original paper.

Backbones Methods R1 R5 R10
Pic2Word ' 115 24.8 33.4

SEARLE-XL 133 283 37.6

. LinCIR 11.7 24.9 342
VITL/14 Context-I2WT 135 28.5 38.1
PrediCIR(50%) 14.6 30.1 39.8
PrediCIR(100%) 15.1 33.0 42.8

. LinCIR 14.8 30.6 40.5
VIT-G/14 PrediCIR 17.2 34.8 45.9

Table 6. Results on COCO for object composition. findicates
results from the original paper.

Backbones Methods mAP@5 mAP@10 mAP@25 mAP@50
Pic2Word 8.7 9.5 10.6 11.3
SEARLE-XL! 11.7 12.7 14.3 15.1
LinCIRT 12.6 13.6 15.0 15.9
ViT-L/14 Context-12W 13.0 14.6 16.1 17.2
PrediCIR(50%) 14.3 15.7 17.2 18.1
PrediCIR(100%) | 15.7 17.1 18.6 19.3
CompoDifff 15.3 17.7 19.5 21.0
ViT-G/14 LinCIR' 19.7 21.0 23.1 24.2
PrediCIR 23.7 24.6 254 26.0

Table 7. Results on CIRCO for object manipulation.

data augmentations, JEPA frameworks preserve semantic
information through latent inpainting, enabling the predic-
tor to model transformations explicitly. By working in the
latent space, JEPA removes redundant or hard-to-predict de-
tails, improving representation quality without focusing on
pixel-level reconstruction [6]. These features make JEPA a

which disregard transformation details, IWM learns equiv-
ariant representations by conditioning on transformation pa-
rameters [10].

The training process begins with the generation of source
() and target (y) views from a given image I. Target views
are created by applying random augmentations such as hori-
zontal flips, cropping, and color jitter, ensuring the target re-
tains as much semantic information as possible. In contrast,
source views are derived from the target by introducing ad-
ditional transformations, including grayscale, blur, solar-
ization, and masking inspired by I-JEPA. These transfor-
mations enforce the predictor to learn transformation-aware
latent representations.

Transformation Encoding. The transformation parame-
ters a,_,,, encode the differences between source and target
views, including augmentation details such as color jitter
and destructive transformations. These parameters serve as
input to the predictor, allowing it to model the transforma-
tions explicitly.

Latent Prediction. The source and target views are pro-
cessed by an encoder fy and its exponential moving aver-
age (EMA) fEMA to obtain latent representations z,, and z,.
The predictor py is conditioned on the source embedding,
transformation parameters, and masked token positions to
predict the target representation Z,. The learning objective
minimizes the L2 distance between the predicted #, and the
actual target z, over masked regions:

L(z,y) = > lIpo (fo(@), awsy,ma); — 5 @)ill5.
1EMS



Algorithm 1 Prediction-based Word Mapping process.

Input: batch of source image features V, = {v,,}7,,
where v, is the global source feature v, , batch of action
Qg —y With manipulation intent, Njqyer-.
Parameter: mask tokens m,, parameterized by a shared
learnable vector z € RY*! with an added positional em-
bedding, 8-heads attention layer Attn, 3-layers FC layers
fus gateg,.
Output: pseudo token S.

1: Initialize m, € R*™, Attn, fy; randomly.

2 Let Xy = [azosy, {Va; J o, malit = 1

3: while ¢t < Ny, do

4 XD = X, Attng(q=X L k=X v= X

s Xk = Xoh + fa (X0
6: t=t+1
7. end while

Sy = fur, (e, ) + tanh(gates) - avg(fur, (Xout))
8: return S,

Architecture. The encoder of IWM adopts the ViT archi-
tecture [9], while the predictor uses a similar structure with
modified depth and embedding dimensions. IWM instances
are denoted as IWM§(7y, where X is the predictor depth,
Y its embedding dimension, and Z specifies its capability,
such as "Equi” for equivariant models.

F.3. The Reusability of IWM

IWM not only enhances representation learning but also en-
ables effective downstream task adaptation. Finetuning the
learned world model alongside the frozen encoder signifi-
cantly improves task performance with minimal additional
cost. Furthermore, inspired by instruction tuning [29], IWM
can be adapted for multi-task learning, demonstrating its
efficiency and versatility compared to traditional methods.
This highlights the importance of incorporating the world
model into inference processes, rather than discarding it af-
ter pretraining.

G. More Implementation Details

For training PrediCIR, We adopt ViT-B/32 and ViT-L/14
CLIP [23] pre-trained on 400M image-text paired data.
The crop sizes and aspect ratios of random cropped im-
ages and blocked target images are the same, in the range
of (0.2,0.25) and (0.75,1.5), respectively (ablation in the
supplementary). For training PrediCIR, we utilize the Con-
ceptual Caption dataset [25], which comprises 3M images.
Our predictor is designed as a lightweight (narrow) ViT ar-
chitecture. Specifically, the number of self-attention blocks
is 12 with 384 dimensional embeddings. To improve train-
ing stability, we initialize the learnable scalar of tanh-gating

to 0 [2]. We employ AdamW [21] with a learning rate of
1 x 10~°, weight decay of 0.1, and a linear warmup of
10000 steps. The batch size is 1024. For training Pic2Word,
SEARLE, Context-I2W, and LinCIR, we utilized their offi-
cial code for training, and hyper-parameters were kept con-
sistent with those reported in their respective papers. All
models are trained on 4 NVIDIA A100 (80G) GPUs. More-
over, we conduct ablation studies on CIRR test sets and
FashionlQ validation sets. For Fashion-1Q, we consider the
average recall. To ensure reliable results, we report the per-
formance averaged over three trials.

G.1. RCDM Visualizations Details.

In Figure 7 of our main paper and Figure 1, to visualize
the representations of a pre-trained neural network in pixel
space, we follow I-JEPA [1], freeze our PrediCIR, and train
a decoder following the RCDM framework [5]. The RCDM
framework trains a decoder network h,,, comprising a gen-
erative diffusion model, to reconstruct an image « from the
representation vector of that image s, and a noisy version
of that image & := x + ¢, where € is an additive noise vec-
tor. Concretely, the decoder objective is to minimize the
loss function ||hy, (&, s;;) — €||. We train each RCDM net-
work for 350,000 iterations using the default hyperparame-
ters. After training the decoder, one can subsequently feed
the representation vector of an unseen test image s,, into the
decoder along with various random noise vectors to gener-
ate several pixel-level visualizations of the representation,
thus providing insight into the features captured in the rep-
resentations of the pre-trained network. Qualities that are
common across samples represent information that is con-
tained in the representation. On the other hand, qualities
that vary across samples represent information that is not
contained in the representations.

G.2. More Evaluation Datasets Details

We evaluate our model on six ZS-CIR datasets, i.e., COCO
[19] and GeneCIS [28] for object/attribute composition,
ImageNet [8, 14] for domain conversion, CIRR [20] and
CIRCO [4] for object/scene manipulation, and Fashion-
IQ [30] for attribute manipulation. Following the origi-
nal benchmarks, we use Recall@k (R @k) as the evaluation
metric for CIRR, GeneCIS, and FashionlQ, COCO, Ima-
geNet and mean average precision (mAP@k) for CIRCO
to account for multiple positives. We also evaluate CIRR
in a subset setting, where Recallgypse; @k measures retrieval
performance within a limited selection of images relevant
to the query in the database. The evaluation datasets are
preprocessed, as explained in the main paper, we describe
the details of the dataset, i.e., number of query images and
candidate images used for evaluation.



FashionIQ [30] is a dataset of fashion-related images
across three categories: Shirt, Dress, and Toptee, compris-
ing 30,134 triplets from 77,684 images. The dataset was
curated by collecting image attributes and then tasking hu-
man annotators to write captions describing highly related
images based on those attributes. FashionlQ simulates real-
istic user interactions, as captions were generated via a chat-
based visual interface to mimic online shopping queries.
The dataset is divided into training (60%), validation (20%),
and test (20%) splits. For zero-shot CIR, we use only the
validation split, as the test set annotations are not publicly
available.

CIRR [20] contains 21,552 real-world images sourced
from NLVR? [26]. The dataset includes training, validation,
and test splits, with the latter evaluated via a remote server.
Our analysis focuses on the validation split for model se-
lection. Unlike FashionlQ, which targets fashion-specific
queries, CIRR encompasses diverse domains with complex
descriptions. The dataset was built by identifying visually
similar images using ResNet-152 [12] pretrained on Ima-
geNet [8] and employing human annotators to describe dif-
ferences between paired images. However, CIRR suffers
from two key issues: (1) image pairs identified by ResNet
often lack true visual similarity, as they were not verified
by human annotators; and (2) captions are often unrealistic
or ambiguous, including unnecessary details. These limita-
tions reduce CIRR’s practical relevance compared to Fash-
ionlQ. Additionally, CIRR uses a small subset retrieval task
(e.g., five items) to mitigate noise, but this approach is prob-
lematic, as the target image often relates only to the text
condition rather than the reference image. Previous stud-
ies [4, 11, 24], have noted the prevalence of false negatives
(FNs) in CIRR, complicating evaluation accuracy, as seen
in other cross-modal retrieval tasks [7, 31].

Notably, both FashionIQ and CIRR face challenges from
FN instances. While each query has a single labeled posi-
tive, multiple valid matches may exist in the dataset. Fash-
ionlQ mitigates this by reporting Recall@K with larger K
values (e.g., 10 or 50), whereas CIRR employs subset re-
trieval. However, these approaches fail to fundamentally
resolve the FN issue, particularly for CIRR’s noisy annota-
tions.

CIRCO [4] builds on the COCO dataset [19], address-
ing the FN problem by including an average of 4.53 ground
truths per query. This design enables more reliable eval-
uation using metrics like mAP. CIRCO contains no train-
ing split and provides validation (220 queries) and test (800
queries) splits, with the latter evaluated remotely.

GeneCIS [28] defines conditional retrieval tasks focusing
on attributes (e.g., “focus on an attribute,” “change an at-
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tribute”) and objects (e.g., “focus on an object,” “change an
object”). Attribute tasks use VisualGenome [17] and VAW
[22], while object tasks are based on COCO [19]. Each
task comprises around 2,000 queries with a small gallery
size (e.g., 15 images, 10 for “focus on an attribute”) to limit
FNs. Text queries correspond to attributes or objects (e.g.,
“color,” “backpack”).

COCO [19] contains images with corresponding lists of
object classes and instance masks of query images. Follow-
ing Pic2Word, we randomly crop one object and mask its
background using its instance mask to create a query for
each image. The list of object classes is used as text speci-
fication.

ImageNet [19] consists of 200 classes across diverse do-
mains with domain annotations. Unlike previous bench-
marks, the task involves retrieving an image in the speci-
fied domain for the same semantic object category (e.g., re-
trieving a cartoon goldfish given a natural goldfish reference
image and the modifier "cartoon"). This task requires
no reasoning over image semantics, as the modifier inde-
pendently specifies a domain change. Significant improve-
ments over Pic2Word and Context-I2W can be achieved by
leveraging the final description format, "a domain of
a caption".

Table 8. The number of images used for evaluation in each dataset.

Dataset ‘ Query images ‘ Candidate images
CIRR (Test) 4,148 2,315
CIRCO (Test) 800 123,403
Fashion (Dress) 2,017 3,817
Fashion (Shirt) 2,038 6,346
Fashion (TopTee) 1,961 5,373
GeneCIS (Focus Attribute) 2000 10
GeneCIS (Change Attribute) 2112 15
GeneCIS (Focus Object) 1960 15
GeneCIS (Change Object) 1960 15
COCO 4,766 4,766
ImageNet 10,000 16,983

G.3. More Inference Details

(1) Domain conversion. This setup evaluates the abil-
ity to compose real images and domain information to re-
trieve corresponding domain-specific images. We utilize
ImageNet [8] and ImageNet-R [14], which comprises 200
classes with diverse domains and has domain annotations.
Following Pic2Word, we pick cartoon, origami, toy, and
sculpture as the evaluation target to avoid noise in the an-
notations. With this selection, we have 16,983 images as
candidates. In the evaluation, given the real image from
ImageNet and target domain names, we compose the query



following the procedure in (a) in the Inference section. e.g.,
a cartoon of [*].

(2) Object/Attribute composition. We evaluate the
GeneCIS [28] test split and the validation split (5000 im-
ages) of COCO [19],, which dataset contains images with
corresponding lists of object classes and instance mask of
query images. Following Pic2Word, we randomly crop one
object and mask its background using its instance mask to
create a query for each image. The list of object classes is
used as text specification. Given the reference image and
class list, we compose a query by following (b) in the In-
ference section. e.g., a photo of [x], [cat] and
[dog].

(3) Object/scene manipulation by text description. In
this setup, a reference image is provided alongside a text
description containing instructions for manipulating either
an object or the background scene depicted in the reference
image. This composition of the reference image and text de-
scription enables the retrieval of manipulated images. We
evaluate the test split of CIRR [20] and CIRCO [4] using
the standard evaluation protocol following previous works
[4, 24, 27], and query texts are composed following the pro-
cedure a photo of [*], [sentence].

(4) Attribute manipulation. We employ Fashion-1Q [30],
which includes various modification texts related to im-
age attributes. These attribute manipulations are given as
a sentence. As with CIRR, we adopt the standard evalu-
ation protocol and create query texts following the proce-
dure a photo of [*], [sentence]. In evaluation,
we employ the validation set, following previous works
[3, 4, 24, 27].

G.4. More Effectiveness and Efficiency Analysis

Our approach achieves significant improvements across six
ZS-CIR tasks, with performance gains ranging from 1.73%
to 4.45% Over SoTA models. Due to our predictor de-
sign for prediction-based mapping, our model size (99.8M)
is larger than the simple 3-layer MLP mapping (0.9M) of
Pic2Word. As a result, in the same setting, our training
time (28 hours) is 6 hours longer than Pic2Word and 18
hours longer than SEARLE. Despite requiring 25 additional
training hours compared to LinCIR, an efficient training
model, PrediCIR completes training 203 hours faster than
the diffusion-based semi-supervised CompoDiff, achieving
significant performance gains. Our inference time(0.03s) is
only 0.01s slower than LinCIR and four times faster than
CompoDiff (0.12s).
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