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6. Appendices
This document provides supplementary material to our pro-
posed neural video codec (NVC), i.e., DCMVC.

6.1. Network Structure
Our DCMVC is built on DCVC-DC [27], and proposes con-
text modulation to generate high-quality temporal context
exploiting the reference information in both pixel and fea-
ture domain. Our proposed context modulation consists of
two modules: flow orientation and context compensation.
The workflow of flow orientation has already been demon-
strated in detail. Here, we describe the details of context
compensation in network structure, which can be divided
into two parts: feature extraction and feature fusion.

6.1.1. Feature Extraction
First, the oriented temporal context Č0

t and propagated tem-
poral context C0

t are input to the mutual extractors sharing
the same network parameters to extract the shallow features,
respectively. As shown in Fig. 9, we regard the oriented
temporal context Č0

t as the input to illustrate the network
structure of mutual extractor. For convolution layer, the
(K,Cin,Cout, S) indicates the kernel size, input channel
number, output channel number, and stride, respectively.
After the first convolution layer and activation layer, the
extracted features are processed using two types of basic
blocks: ResidualBlock and DepthConvBlock.

The structure of ResidualBlock is shown in Fig. 10 (a),
where the input is added to the features extracted from
the middle layers. As illustrated in Fig. 10 (b), Depth-
ConvBlock which contains depthwise separable convolu-
tion and pointwise convolution is used for reducing the
computation cost. After obtaining the shallow features from
the mutual extractor, the subsequent private global and local
extrators learn the global and local features of each tempo-
ral context individually. The structure of global extractor
is shown in Fig. 11, except the first depthwise convolution
layer is with 3×3 kernel size, other convolutional layers are
designed with 1×1 kernel size for reducing the complexity.
We wish the local branch can preserve as much detailed in-
formation of two temporal contexts as possible, so we adopt
invertible neural networks with affine decoupling layers as
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Figure 9. The network structure of mutual extractor.
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(a) ResidualBlock
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(b) DepthConvBlock

Figure 10. (a) The network structure of ResidualBlock. (b) The
network structure of DepthConvBlock.
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Figure 11. The network structure of global extractor. The global
fusion shares the same network architecture with global extractor.
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(a) Local Encoder

(b) Inverted Block

Figure 12. (a) The network structure of local extractor, and the
local fusion shares the same network architecture with local ex-
tractor. (b) The network structure of Inverted Block.

shown in Fig. 12 (a). The detailed network structure of
Inverted Blocks utilized in the local extractor is shown in
Fig. 12 (b).
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Figure 13. The network structure of mutual fusion.

Table 5. BD-Rate (%) of using different α to control the weight of
decoupling loss.

α 0 0.1 0.2 0.4
BD-Rate (%) 0.0 -0.2 -1.0 -0.5

6.1.2. Feature Fusion
To maintain the performance by leveraging the consistency
assumption, the networks of extractor and fusion adopt the
same architecture. The network structures of global and lo-
cal fusion are also shown in Fig. 11 and Fig. 12 (a). Af-
ter obtaining the fused global feature and local feature, the
two features are concatenated to input the mutual fusion as
shown in Fig. 13. The first convolution layer with 1×1 ker-
nel size is utilized for reducing the channel number, and the
subsequent two convolution layers with 3×3 kernel size are
utilized to extract the features to compensate the propagated
temporal context C0

t for generating the final compensated
temporal context C

0

t .

6.2. Decoupling Loss
In this paper, we design the decoupling loss to facilitate
the synergy mechanism in context compensation during the
training. When adding the decoupling loss into the rate-
distortion loss function, the α is set for controlling the
weight of decoupling loss. We train models with differ-
ent α, and evaluate the average rate-distortion (RD) perfor-
mance on HEVC datasets with the intra-period set of 32
shown in Table 5. The model Md in Table 3 is the anchor
with α set as 0 in Table 5. From this table, we can see that
when α is set as 0.2, the model achieves the highest com-
pression ratio, so we choose 0.2 as our final setting for α.

6.3. Rate-Distortion Curves
In this document, we demonstrate the RD curves of all test-
ing datasets in terms of RGB-PSNR, and the intra-period
is set as 32 and -1, respectively. We evaluate our scheme
against two categories of codecs. For the traditional codec,
we choose H.266/VVC [8] as our benchmark. For NVCs,
we choose six benchmarks: DCVC [25], DCVC-TCM [47],
DCVC-HEM [26], DCVC-DC [27], SDD [48], and DCVC-
FM [28].

As shown in Fig. 14, we illustrate the RD curves of
USTC-TD [33] dataset under the intra-period setting of
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Figure 14. Rate and distortion curve for USTC-TD dataset, and
the comparison is in RGB colorspace measured with PSNR. (a)
The intra-period is set as 32. (b) The intra-period is set as -1.

32 and -1. All the other NVCs that we compared show
a notable gap in compression performance compared to
H.266/VVC under both intra-period settings, while our
DCMVC achieves compression performance most compa-
rable to H.266/VVC, demonstrating its superior effective-
ness. The performance loss of NVCs in the USTC-TD
dataset may come from the presence of complex motion
features, such as high-speed moving objects and object oc-
clusions, which lead to poor temporal prediction. In the fu-
ture, we will address this limitation in three ways: first, we
will design a learnable warp operation for flexible temporal
alignment. Second, we will learn multiple predefined mo-
tion patterns as priors for more efficient temporal context
modeling. Third, we will consider adding long-term tem-
poral dependencies to our temporal context modeling for
utilizing multi-frame information.

Moreover, we also show the RD curves of UVG [42],
MCl-JCV [55], HEVC B, C, D, and E [7] datasets under
intra-period setting of 32 in Fig. 15 and Fig. 16. From these
figures, we can see our DCMVC achieves state-of-the-art
(SOTA) compression ratio in all the datasets. As shown
in Fig. 17 and Fig. 18, the RD curves of aforementioned
datasets under intra-period setting of -1 are illustrated. We
can see our DCMVC outperforms other schemes signifi-
cantly in terms of compression ratio, which verifies the ef-
fectiveness of our scheme in long prediction chains.

6.4. Visual Comparison
We provide four visual comparisons across difference se-
quences to show the advantage of our DCMVC, which are
shown in Fig 20 and Fig 19. From these figures, we can
see that our DCMVC enables better reconstruction of both
structural and texture information without introducing ad-
ditional bitrate cost, when compared to the previous SOTA
NVCs, DCVC-DC and DCVC-FM.
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Figure 15. Rate and distortion curve for HEVC Class B, D, and E datasets. The comparisons are in RGB colorspace measured with PSNR,
and the intra-period is set as 32.
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Figure 16. Rate and distortion curve for UVG, MCL-JCV, and HEVC Class C datasets. The comparisons are in RGB colorspace measured
with PSNR, and the intra-period is set as 32.
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Figure 17. Rate and distortion curve for HEVC Class B, D, and E datasets. The comparisons are in RGB colorspace measured with PSNR,
and the intra-period is set as -1.
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Figure 18. Rate and distortion curve for UVG, MCL-JCV, and HEVC Class C datasets. The comparisons are in RGB colorspace measured
with PSNR, and the intra-period is set as -1.
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BPP / PSNR 0.013 / 35.65 0.014 / 35.73 0.13 / 36.23

Figure 19. Visual comparisions for Jockey and BasketballDrill sequences.
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Figure 20. Visual comparisions for BasketballDrive and videoSRC24 sequences.


