OnlineAnySeg: Online Zero-Shot 3D Segmentation by Visual Foundation Model
Guided 2D Mask Merging

Supplementary Material

1. Overview

In the supplementary material, the sections are briefly intro-
duced as follows:

* We provide more detailed analyses for certain modules of
our method in Sec. 2.

» Additional experimental results, including both quantita-
tive and qualitative analyses, are presented in Sec. 3.

* In Sec. 4 we present a video demo showcasing the process
of our online segmentation as well as visual comparisons
to other online segmentation methods.

2. Method Details

2.1. Discussion about Overlap Ratio

As introduced in Sec. 3.3 of the main paper, we define the
Overlap Ratio, which quantifies the overlap between a pair
of masks in 3D space, with the overlap ratios for all mask
pairs stored in the matrix I;. Another straightforward way
to measure the overlap between two masks m, and my is
to calculate the proportion of overlapping voxels relative to
the voxel count of the mask, for example:
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without considering the visual part of the visible part of
mask my in the frame set of mask m,. However, we find
that this approach is not feasible for our method. A detailed
analysis is provided here.
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Figure 1. An example of computing overlap ratio without consid-
ering “'visible part”.

An example of two masks belonging to the same 3D in-
stance is given in Fig. 1. These masks represent observa-
tions of the same chair, captured from different viewpoints
(as highlighted by the green bounding box). The voxel sizes
of the lifted 3D masks are 3520 and 644 respectively, with

an intersection size of 358 voxels. According to the defini-
tion in Eq. (1), the overlap ratio of m, to my is calculated
as orf, , = 358 = 0.556, which is considerably lower
than what intuition might suggest. This is because, with
the significant difference between the two viewpoints, the
two masks cannot align perfectly in 3D space, due to depth
noise and occlusion. On the other hand, if we set the thresh-
old for the overlap ratio too low (e.g., 0.5), it may lead to
other problems. For instance, if a chair is located very close
to a table, and a mis-segmentation occurs in a 2D frame
where a large portion of the chair is incorrectly segmented
as part of the table, the merging strategy may erroneously
combine them into a single instance, making our method
highly sensitive to under-segmentation.

By incorporating the “visible part”, the overlap ratio of
Mg to My is or(,p) = 1.0 (following the definition of the
overlap ratio in the main paper Sec. 3.3), which aligns with
their identity in 3D space. A qualitative comparison of the
two different methods for calculating the overlap ratio is
provided in Tab. 1.

AP AP50 AP25
136 269 403
18.6 36.1 53.5

w/o ”Visible Part”
w “Visible Part”

Table 1. Comparison of different methods for calculating the
Overlap Ratio.

2.2. Extraction of Geometric Feature

In Sec. 3.3 of the main paper, we describe the extraction of
geometric features for each detected mask using FCGF [4].
A visualization of the extracted feature point clouds by
FCGF is presented in Fig. 2, where points with similar
colors indicate higher feature similarity. In our method,
the per-point geometric features of the latest reconstructed
point cloud S; are extracted, and the features for each mask
are aggregated based on their corresponding scene points.
as illustrated in Fig. 3 (b). Compared to the naive method of
directly feeding the back-projected point cloud of each de-
tected mask into the geometric feature extractor, as shown
in Fig. 3 (a), our approach is both more accurate and time-
efficient.

First, as an input sequence typically contains thousands
of masks in total, extracting geometric features for each
mask individually can result in significant time overhead.
Additionally, since FCGF is a fully convolutional network
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Figure 2. Visualizations of feature point clouds output by FCGF [4]. The first row shows the reconstructed point clouds from our
method. The second row displays their corresponding feature point clouds, colorized based on the extracted per-point features, where
points with similar colors indicate high feature similarity within the same feature point cloud.
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Figure 3. Comparison of different approaches for extracting
geometric features of masks. (a) Extracting point features sepa-
rately for each point cloud. (b) Extracting point features from the
global point cloud and cropping the resulting feature point cloud
to obtain sub-feature point clouds.

capable of capturing broad spatial context, using a more
complete input point cloud produces higher-quality output
features. Visualizations of the output feature point clouds
are presented in Fig. 3, where more similar colors indicate
higher feature similarity. For a pair of masks (m,, my,) cor-
responding to the same 3D instance observed from different
viewpoints (denoted as frame 1 and frame 2), the signif-
icant disparity between the viewpoints can lead to notable
feature dissimilarities when extracted separately ( Fig. 3, a).
In contrast, cropping the complete feature point cloud of .S,
ensures globally consistent features for the masks ( Fig. 3,
b).

2.3. Comparison with Frame-by-frame Mask
Merging Strategy

We describe our online mask merging strategy in Sec. 3.4
of the main paper, which establishes mask associations by
overall similarities and third-view support. In contrast,
some previous methods adopt a “frame-by-frame” merg-
ing strategy to process sequential inputs. For example,
OVIR-3D [7] focuses on finding instance correspondences
between newly detected masks in incoming frames and all
existing masks from previous frames. Even though various
post-processing operations can be applied to remove redun-
dant instances, the “frame-by-frame” merging strategy can
lead to significant issues, particularly in the following sce-
narios. A typical example is shown in Fig. 4.

Reconstructed point cloud

Frame-by-frame merging Ours

Figure 4. Visual comparison of different merging strategies.
The frame-by-frame” mask merging strategy struggles to handle
segmentation for large instances and significant viewpoint dispar-
ity.

First, for a large object observed partially from differ-
ent viewpoints with minimal overlap, the “frame-by-frame”
merging strategy struggles to correctly associate the newly



observed part with previous observations. For instance, as
illustrated in Fig. 4, a long dining table is segmented into
two separate instances by the “frame-by-frame” merging
strategy. Second, if a previously detected object is scanned
again from a completely different viewpoint, the newly de-
tected instance is often not successfully matched to the ex-
isting one, resulting in it being treated as a new instance.
This issue is exemplified by the chairs in Fig. 4.

Our mask merging strategy, on the other hand, fully
leverages all previous observations to ensure global consis-
tency. Additionally, by incorporating third-view supporting
to establish extra associations between masks with limited
overlap, these issues can be significantly mitigated. A qual-
itative comparison of these two merging strategies is pre-
sented in Tab. 2.

AP APsy AP»s
Frame-by-frame | 14.7 29.0 4423
Ours 18.6 36.1 53.5

Table 2. Comparison of different mask merging strategies.

2.4. Comparison without using the mapping table

We introduce the mapping table in Sec. 3.2 of the main pa-
per, which maps the IDs of the original 2D masks to the
IDs of the current 3D masks, enabling the tracking of each
mask throughout every merging process. Instead of directly
updating the mask ID lists in the hashed voxel volume, the
re-assignment of mask IDs during the merging stage (Sec-
tion 3.4 of the main paper) only triggers a synchronous up-
date of the mapping table, keeping the hash table append-
only. This design significantly accelerates the updating of
the mask bank Gy, as frequent voxel modifications in the
volume are highly time-consuming.

A speed comparison of the scanning process with and
without the mapping table is shown in Fig. 5, demonstrat-
ing the effectiveness of this design. Without the mapping
table, the process is approximately 10 times slower, and the
slowdown can even reach up to 20 times as the number of
masks increases.
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Figure 5. Comparison of speed with and without the mapping ta-
ble.

3. Additional Experiments

3.1. More Full-sequence Results

The qualitative results and visual comparison of full-
sequence instance segmentation are provided in the Sec. 4.2
and Sec. 4.3 of the main paper. To facilitate a more de-
tailed comparison, we present the per-sequence results of
our method and other online methods on SceneNN [6], as
shown in Tab. 3.

SAM3D [11] performs poorly overall due to its naive
mask merging strategy. Compared with Emboidied-
SAM [9], our method achieves higher performance under
low and medium IoU thresholds but performs worse un-
der high IoU thresholds. The reason is that as a learning-
based method, EmbodiedSAM trains a classification head
to to distinguish between foreground and background in ad-
vance. Background instances, such as walls and floors, are
filtered out, leaving only foreground instances to be pro-
cessed and merged. In contrast, as zero-shot methods, both
our method and MaskClustering [ 10] lack pre-filtering oper-
ations and process all detected instances equally. This phe-
nomenon is evident in Fig. 6 of the main paper, where the
background is pained uniformly in gray. Since, under high
IoU thresholds, the predicted walls and floors often fail to
match the ground truth accurately, zero-shot methods may
experience a drop in performance.

3.2. More Intermediate Results

In addition to the final segmentation results, we evaluate the
intermediate segmentation outputs of EmbodiedSAM and
our method, with results presented in Fig. 4 and Tab. 2
of the main paper. Furthermore, we conduct more detailed
experiments to explore the core reasons behind the superior
real-time segmentation performance of our method.

The real-time segmentation results at different quarters
of the input sequence are presented in Tab. 4. Each sub-
table shows the AP scores at the completion of 25%, 50%,
and 75% of the sequence respectively. Our method out-
performs EmbodiedSAM in most sequences, demonstrating
the effectiveness of our global-consistent merging strategy.
This also indicates that our approach has less reliance on
post-processing steps, such as smoothing, to achieve high-
quality segmentation results.

Meanwhile, we also provide a detailed visual com-
parison of instance segmentaion results on progressively
scanned scenes in Fig. 7. Several challenging scenes from
ScanNet200 [8] and SceneNN [6] are showcased to high-
light the performance of our method in complex envi-
ronments. The intermediate segmentation results are di-
rectly presented on the reconstructed point cloud (Embod-
iedSAM) or reconstructed mesh (ours), with backgrounds
painted in gray. We observe that while EmbodiedSAM per-
forms well on ScanNet200 (the first and fourth scenes), the



Scene SAM3D* [11] EmbodiedSAM** [9] Ours*
AP APsg  APss AP APsg  APss AP  APyy APy
005 9.1 25.6 54.8 15.5 25.9 484 21.0 49.5 63.4
011 29.1 44.5 53.0 44.1 53.0 57.9 33.3 54.5 64.9
015 6.4 16.9 32.7 17.8 32.3 43.3 16.9 35.7 45.1
030 4.1 10.0 38.2 28.0 42.7 52.6 17.1 29.2 50.0
054 9.3 27.0 50.7 23.5 41.4 61.4 16.9 31.7 61.2
080 9.0 22.4 54.3 7.5 17.6 30.0 13.6 27.8 54.1
089 5.9 17.2 48.2 9.7 22.3 42.3 7.8 16.1 50.4
093 12.5 23.8 46.2 24.7 37.9 47.3 19.8 41.1 65.5
096 9.9 22.5 55.8 21.7 36.2 44.5 16.4 29.2 60.6
243 4.5 14.2 40.9 16.3 27.6 514 12.7 31.7 69.1
263 14.8 39.2 59.0 27.9 38.9 47.3 26.6 52.6 66.7
322 16.4 31.8 51.3 33.1 41.1 52.8 31.7 56.9 77.3
Overall 9.1 21.3 434 20.1 32.5 46.3 18.1 353 59.5

Table 3. Full-sequence instance segmentation results on SceneNN [6]. We present the per-sequence results of the online methods. *:

Zero-shot method, **: Learning-based method.

dataset on which it is trained, it tends to output noisy seg-
mentation results when transferred to other datasets (the
other four scenes), as highlighted by the red bounding boxes
in Fig. 7.

The reason for this is that the mask merging strategy
used by EmbodiedSAM is essentially a “frame-by-frame”
approach. It utilizes the encoded features output by the
trained model, along with the IoU of mask bounding boxes,
to evaluate the similarity between newly detected masks and
previous instance masks. This approach avoids calculating
precise 3D spatial overlap between mask pairs, which may
lead to issues when transferring to new datasets with differ-
ent characteristics. In contrast, our mask merging strategy
incorporates more global information during each merging
step, fundamentally differing from the “frame-by-frame”
approach, as discussed in Sec. 2.3.

3.3. More Ablation Studies

We also test different Tyeign values and the results are shown
in Tab. 5, demonstrating the robustness of our method and
confirming Tyeighe = 5 as the optimal parameter choice.

Tweight 3 4 5 6 7 8

APys | 52.1 53,5 535 535 530 526
APso | 327 36.1 36.1 36.1 363 34.1
AP 179 18.6 186 183 180 174

Table 5. Ablation study on Tyejghe On ScanNet200.

Figure 6. Equipment setup for real-world experiments. The
experimental setup consists of an EOS robotic arm [1] guided by
the Water II vehicle [3], with a Microsoft Azure Kinect DK RGB-
D sensor [2] mounted at the arm’s end.

4. Online Video Demo

We also provide a video demonstration, showcasing the
real-time reconstruction and segmentation process of our
method on several challenging scenes from ScanNet200 [5,
8] and SceneNN [6]. In addition, we deploy our online seg-
mentation method on an EO5 robotic arm [1], guided by
the Water II vehicle [3], with a Microsoft Azure Kinect
DK RGB-D sensor [2] mounted at the end, as illustrated
in Fig. 6. A real-world demo is also presented in the video.
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(a) Intermediate results at 25% sequence completion.

EmbodiedSAM** [9] Ours”

AP AP50 AP25 AP AP50 AP25
005 7.1 17.5 51.0 86 262 47.1

011 | 11.5 257 429 |34.7 525 613
015 | 14.7 34.1 473 [41.6 61.5 81.1

030 |12.2 209 374 9.3 257 48.2
054 | 143 45.0 64.3 13.0 36.7 65.6
080 | 7.8 13.0 524 [22.0 49.1 493
089 | 6.6 238 404 3.9 9.7 44.9
093 | 17.8 46.6 632 |325 512 726
096 |11.7 36.8 38.3 104 19.1 59.5
243 | 11.1 229 62.5 18.6 46.5 59.6
263 | 265 522 615 (425 732 86.6
322 | 9.3 222 350 |18.2 36.7 61.1

Scene

(b) Intermediate results at 50% sequence completion.

EmbodiedSAM** [9] Ours”

AP AP50 AP25 AP AP50 AP25
005 85 174 423 129 348 60.2
011 | 15.8 35.1 552 [32.0 61.2 68.1
015 |17.2 379 38.1 204 411 523
030 | 143 227 40.1 17.1 30.0 48.5
054 | 19.7 60.6 763 |204 430 694
080 | 5.1 16.5 356 |17.8 40.6 57.2
089 | 48 189 41.0 61 169 49.0
093 | 16.7 399 59.7 |21.0 38.6 632
096 | 10.0 353 428 |153 264 61.1
243 9.1 202 63.8 109 319 60.8
263 | 294 522 69.2 [38.6 683 76.7
322 | 11.2 247 37.5 169 429 741

Scene

(c) Intermediate results at 75% sequence completion.

EmbodiedSAM** [9] Ours”

AP AP50 AP25 AP AP50 AP25
005 93 20.2 53.5 155 37.7 585
011 | 17.8 333 59.1 370 651 70.1
015 | 12.8 27.1 413 (261 354 45.6
030 | 18.3 30.6 47.9 159 250 41.7
054 |16.2 41.1 67.5 |194 402 616
080 | 3.1 7.2 339 142 30.8 51.2
089 | 5.0 19.0 45.5 51 183 526
093 | 13.6 31.0 58.8 198 34.7 63.0
096 | 11.5 41.5 49.0 |13.8 254 66.0
243 | 11.7 23.1 66.7 16.1 40.5 66.7
263 | 224 392 57.1 352 622 742
322 | 183 38.0 472 1263 498 77.1

Scene

Table 4. Intermediate instance segmentation results on Sce-
neNN [6]. The instance segmentation results are evaluated by
mapping from the reconstructed point cloud or mesh to ground
truth point cloud through point correspondences. *: Zero-shot
method, **: Learning-based method.
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Figure 7. Visual comparison of intermediate segmentation results with EmbodiedSAM [9].
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