
SpecTRe-GS: Modeling Highly Specular Surfaces with Reflected Nearby Objects
by Tracing Rays in 3D Gaussian Splatting

Supplementary Material
Jiajun Tang1,2 Fan Fei1,2 Zhihao Li3 Xiao Tang3 Shiyong Liu3

Youyu Chen4 Binxiao Huang5 Zhenyu Chen3 Xiaofei Wu3 Boxin Shi1,2#

1State Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University
2National Engineering Research Center of Visual Technology, School of Computer Science, Peking University

3Huawei Noah’s Ark Lab 4Harbin Institute of Technology 5University of Hong Kong

In this supplementary material, we provide additional
implementation details for SpecTRe-GS (Sec. 6), the cre-
ation details of synthetic and real-world data (Sec. 7),
and further qualitative/quantitative results and experimental
analyses (Sec. 8). The videos on the project page1 showcase
qualitative view interpolation and scene editing results.

6. Additional Implementation Details
6.1. Implementation of Ray Tracing
The ray tracer described in Sec. 3.3 in the main paper is
implemented in OptiX 7 [7] and integrated into the 3DGS
framework with the PyOptiX package as the Python bind-
ings for the OptiX host API. According to the OptiX 7 spec-
ification, the OptiX pipeline consists of user-programmable
entry points (programs) for different stages in ray tracing,
we implement ray tracing in the Gaussians point cloud with
custom ray-gen and any-hit programs:
• we initialize ray origin and direction, set and read the per-

ray payloads, evaluate responses of Gaussians, and aggre-
gate the volumetric radiance in the ray-gen program;

• we calculate the precise hit point of the mesh-bounded
Gaussians and store the hit information into the per-ray
buffer in the any-hit program.

The programs are described in Proc. 1 and Proc. 2. In our
implementation, we construct a max heap of size k = 256
to store the closest hits with the complexity of O(N log k),
where N is the total number of hits.

6.2. Alignment of Rasteriazion and Ray Tracing
We align the radiance aggregation process of our ray tracer
to that of the rasterizer. We use the rasterizer in GOF [14] as
GOF calculates the maximum response of Gaussians along
the rays. However, GOF still uses projected center depths
to sort Gaussians in volumetric rendering. Therefore, we
deliberately calculate projected depths as thit,i in our ray
tracer and use thit,i instead of tmax,i for the ordering in
Eq. (1). We also use the same ray termination threshold

The work was done during an internship in Huawei.
#Corresponding author. E-mail: shiboxin@pku.edu.cn.

1https://spectre-gs.github.io/

of remaining transmittance Tmin = 0.001 and max num-
ber of contributing Gaussians Kmax = 256 for our raster-
izer and ray tracer. This reduces the discrepancy between
the rendered appearances of the same Gaussian point cloud
by these two renderers, which would cause the inconsis-
tency between the directly observed appearance of objects
and their appearance through a highly specular surface.

Procedure 1: Ray-gen Program
Input: ray origin o, ray direction d, GAS handleH,

Gaussians {Gi}, min transmittance Tmin,
min contribution αmin, hit buffer size k, min
ray distance tnear, max ray distance tfar

Output: ray incident radiance Iind, ray visibility Vi,
ray depth Dind

1 Iind ← (0, 0, 0);
2 Vi ← 1;
3 Dind ← 0;
4 tcurr ← tnear;
5 while tcurr < tfar and Vi > Tmin do
6 c← 0;
7 B ← buffer(k);
8 setPayload(B, c);
9 traceRay(H,o+ tcurrd,d, k);

10 B, c← getPayload();
11 if c = 0 then
12 terminateRay();
13 end
14 B ← sort(B);
15 for (thit, i) in B do
16 tmax, αhit ← response(µi, si, qi,o,d);
17 if αhit > αmin then
18 ci = SH(φi,d);
19 Iind ← Iind + αhitVici;
20 Dind ← Dind + αhitVitmax;
21 Vi ← (1− αhit)Vi;
22 end
23 tcurr ← thit;
24 end
25 end

https://spectre-gs.github.io/

Procedure 2: Any-hit Program
Input: ray origin o, ray direction d, Gaussians

{Gi}, hitted primitive index i, hit buffer B,
hit buffer size k, hit count c

Output: in-place modified hit buffer B, hit count c
1 thit ← projectDepth(µi,o,d);
2 h← (thit, i);
3 if c = k then
4 hmax ← B.popMax();
5 else
6 hmax ← (+∞,−1));
7 c← c+ 1;
8 end
9 hnew ← findCloser(hmax, h);

10 B.insert(hnew);

6.3. Training Details
During training, we use the same color reconstruction loss
as commonly adopted in 3DGS-based methods [5]:

Lc = 0.8 · 1

|IGT|
∑
||IGT − I||1 − 0.2 · SSIM(IGT, I),

(14)
and we also apply this loss to Iss in later training steps
(>15k iterations) to encourage physics-based modeling of
highly reflective regions.

We follow Eq. (1) to compute the mean depth of con-
tributing Gaussians as the surface depth, instead of the
depth of the “median” Gaussian in GOF [14], which we
find is generally more noisy and inefficient in utilizing gra-
dient signals. In the first 4k steps, we only rely on SH color
modeling to quickly get a rough geometry initialization and
low-frequency view-dependent radiance modeling.

Since the Fresnel reflectance is calculated from approx-
imation (Eq. (4)), we detach ∂Aspec/∂n and clip Aspec as
min(Aspec, 10F0) to ensure numerical stability.

We only run StableNormal [12] once for all scenes and
save the estimated normals as monocular normal priors.

6.4. Tone Mapping
Our method operates in linear color space as required
by physically-based rendering. We assume the gamma-
corrected sRGB space of γ = 2.2 is usually used in the in-
put images, which is closer to human perception. Thus, we
can convert the images into linear color space by inversely
applying the gamma correction. We convert our results back
to the commonly adopted gamma-corrected sRGB space
with γ = 2.2 prior to visualization or the computation of
photometric losses and error metrics.

7. Data Creation Details
7.1. Synthetic Scenes
We collect 6 synthetic scenes using the Blender Cy-
cles engine [3]: HELMET, MARBLETABLE, VASE, POT,
TOASTER, and MIRROR, as described in Sec. 4.2 in the
main paper. We show example images of each scene in
Tab. 4 and Tab. 5 of this document.

7.2. Real-world Scenes
For real-world scenes, we use a hand-held iPhone 15 Pro
and the “ProCam” app to take raw images with a linear
camera response. We fix the white balance, focal length,
exposure time, and ISO for all images in the same scene.
We register the camera poses using COLMAP [8, 9] with
SuperPoint [2] for feature extraction and LightGlue [6] for
matching. After obtaining the captured raw images of the
scene, we use a custom image signal processor (ISP) to pro-
cess the raw image by, e.g., demosaicking, white balancing,
transforming color space, and most importantly, applying a
tone mapping with γ = 2.2 to let the processed images sat-
isfy our assumption of availability of linear space images.
We resize the images to 1440 × 1080 and remove the out-
of-focus background regions. The highly reflective regions
are manually marked. By doing so, we collect 2 real-world
scenes: REALBOWL and REALPOT. We show example im-
ages of each scene in Tab. 5 of this document.

8. Additional Results
8.1. Results with Varying Roughness
Our method is designed for perfect mirror reflections. Nev-
ertheless, the inclusion of a low-frequency component gives
it the ability to model rougher surfaces to some extent.
Fig. 7 shows its results on the HELMET scene with vary-
ing roughness, from highly smooth (ρ = 0.05) to medium
rough (ρ = 0.3). For each roughness value, we show
the rendered image and the ground truth image in a test
view, alongside the decomposition of specular component
AspecIi ⊙ (1 − Ir) and low-frequency component Idiff ⊙
(1 − Ir) + Irs ⊙ Ir, expanded according to the modeling
in Sec. 3.2 and soft mask Ir in Sec. 3.4. As the roughness
increases, while direct specular reflections can be approx-
imated by blurred environment maps, indirect specular re-
flections in the lower half of the helmet are mimicked by
brighter Irs with lower Aspec values.

8.2. Geometry Representation
As shown in Fig. 8, our method can better capture the pla-
nar surface in MARBLETABLE scene with most points well
aligned to the object, benefitting from our normal prior
guidance and joint optimization of incident radiance and ge-
ometry. Without accurate geometry optimization and inci-

𝜌𝜌
=

0.
05

Low-frequency
Reflection

Specular
ReflectionGround Truth Specular

Reflectance Soft Mask

𝜌𝜌
=

0.
1

𝜌𝜌
=

0.
2

𝜌𝜌
=

0.
3

Rendering

Figure 7. As surface roughness increases, our method attributes more proportion of the scene appearance to low-frequency reflection
instead of perfect mirror reflection.

dent radiance reconstruction, other methods tend to fit high-
frequency view-dependent specular reflection with high-
frequency floaters.

8.3. Qualitative Ablation Results
Fig. 9 shows the results of the ablated variants of our
method mentioned in Sec. 4.4 in the same view as Fig. 4.
When the monocular normal prior guidance is absent dur-
ing early training stages (Ours w/o N.), the training loss
terms tend to overemphasize color reconstruction fidelity
in observed images, causing the scene representation to
converge to local minima with geometry deviating from
ground truth in highly specular regions (as shown by the
translucent artifacts on the left side of the helmet in col-
umn 1, indicating incomplete underlying geometric recon-
struction). Conversely, when relying solely on monocular
normal priors without subsequent joint optimization to re-
fine scene geometry (Ours w/o J.), the inherent inaccuracies
and multi-view inconsistencies in monocular normal pre-
dictions prevent the reconstruction of precise geometry re-
quired for physics-based high-frequency reflection model-

ing (evidenced by the missing high-frequency details in the
reflections on the helmet surface, as depicted in column 2).
As previously discussed regarding physics-based rendering
approaches, modeling only direct illumination (Ours w/o
I.) leads to indirect lighting effects being baked into either
SH color representations or diffuse albedo, thereby com-
promising high-frequency component quality (manifested
as missing high-frequency details and ghosting artifacts in
the lower helmet region due to inter-reflections, shown in
column 3). The progressive learning scheme (Ours w/o
P.) and depth-aware ray perturbation (Ours w/o D.) also
significantly contribute to faithful reconstruction of view-
dependent high-frequency specular reflections.

8.4. Alignment of Rendering Methods
We analyze the consistency of rendering results from our
rasterizer and ray tracer on the STUMP scene of the Mip-
NeRF 360 dataset [1], which is a prerequisite for accurately
evaluating indirect incident radiance. We show the rendered
images and the corresponding PSNR scores of each ren-
derer in Fig. 10, accompanied by the error map visualiza-

Ours 3DGS GOF 3iGS GShader 3DGS-DR

Figure 8. Visualization of the point cloud reconstructed by comparing methods [4, 5, 10, 13, 14]. Ours more faithfully captures the
underlying geometry of reflective regions, while other methods disrupt their geometry to imitate highly specular reflections.

Ours w/o N. Ours w/o J. Ours w/o I. Ours w/o P. Ours w/o D. Ours
Figure 9. Qualitative ablation results with variants of our proposed method excluding: Normal prior guidance, Joint geometry optimization,
Indirect incident lighting modeling, Progressive learning, and Depth-aware ray perturbation.

Rasterized Image Ray-traced Image Error Map
0

0.1

PSNR: 26.19 PSNR: 26.16

Figure 10. Rasterized and ray-traced results in our proposed
method are highly consistent, which ensures accurate indirect in-
cident radiance queries from the Gaussian point cloud shared by
our rasterizer and ray tracer.

tion. The rendering results from those two renderers in our
pipeline remain highly consistent, as indicated by the incon-
spicuous visual difference, the close PSNR scores, and the
colors in the error map.

8.5. More Quantitative Results
We show detailed quantitative results on each scene
in Tab. 4 and Tab. 5 of this document. In general,
our SpecTRe-GS consistently outperforms most compared
methods on both synthetic scenes and real-world scenes, es-
pecially within reflective regions.

8.6. More Qualitative Results
We show additional qualitative comparisons with the base-
line methods2 on each scene in Fig. 11-14 of this document.
For each scene, we show comprehensive visual comparison
results from multiple test views.

2We show results of GShader* for all scenes, 3DGS-DR* for HELMET
scene as their better performance indicated by quantitative evaluations.

We provide videos of view interpolation results as at-
tached files on the project page. Compared with baseline
methods, our method gives more view-consistent render-
ings of high-frequency reflection, which better respects the
geometry of the highly reflective surfaces. In addition, we
provide videos of the scene editing results.

Table 4. Quantitative comparison results with state-of-the-art methods on each of the 4 synthetic scenes (HELMET, MARBLETABLE, VASE,
and POT). We show example images and the dataset splits of each scene in the leftmost column. We report the scores of PSNR, SSIM [11],
and LPIPS [15] for entire images and within reflective regions. We mark the best and the second best results in each column. ↑ (↓) means
higher (lower) is better.

Scene Method
Entire Image Reflective Region

PSNR↓ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

HELMET 3DGS [5] 27.92 0.881 0.157 21.62 0.918 0.090
(train: 201, test:100) GOF [14] 28.28 0.893 0.130 21.62 0.918 0.086

GOF* [14] 27.15 0.887 0.145 20.28 0.912 0.100
3iGS [10] 28.33 0.883 0.152 22.06 0.919 0.088
GShader [4] 25.80 0.836 0.204 20.72 0.913 0.098
GShader* [4] 26.51 0.846 0.196 21.28 0.915 0.097
3DGS-DR [13] 26.32 0.841 0.233 20.76 0.914 0.098
3DGS-DR* [13] 27.15 0.845 0.226 22.36 0.927 0.083
Ours 29.90 0.914 0.112 24.05 0.944 0.056

MARBLETABLE 3DGS [5] 22.41 0.858 0.197 20.10 0.889 0.142
(train: 233, test:123) GOF [14] 23.59 0.873 0.177 19.77 0.889 0.137

GOF* [14] 24.14 0.870 0.187 19.71 0.884 0.150
3iGS [10] 24.42 0.865 0.184 20.09 0.880 0.145
GShader [4] 24.28 0.856 0.209 20.65 0.878 0.160
GShader* [4] 24.89 0.865 0.198 21.27 0.886 0.152
3DGS-DR [13] 25.37 0.857 0.223 22.02 0.882 0.164
3DGS-DR* [13] 22.51 0.837 0.239 19.63 0.866 0.180
Ours 26.89 0.875 0.183 22.38 0.890 0.142

VASE 3DGS [5] 33.16 0.944 0.093 26.42 0.975 0.042
(train: 201, test:100) GOF [14] 33.28 0.948 0.083 26.36 0.975 0.040

GOF* [14] 32.72 0.945 0.087 25.32 0.973 0.045
3iGS [10] 33.02 0.943 0.091 26.60 0.975 0.042
GShader [4] 30.33 0.912 0.129 25.14 0.973 0.046
GShader* [4] 30.79 0.919 0.121 25.44 0.973 0.046
3DGS-DR [13] 31.35 0.914 0.149 25.86 0.973 0.046
3DGS-DR* [13] 30.94 0.912 0.152 25.10 0.971 0.049
Ours 33.14 0.949 0.076 27.20 0.982 0.027

POT 3DGS [5] 29.88 0.923 0.096 23.50 0.945 0.062
(train: 201, test:100) GOF [14] 29.71 0.921 0.093 23.41 0.943 0.058

GOF* [14] 29.04 0.919 0.105 22.22 0.940 0.071
3iGS [10] 31.13 0.928 0.090 23.88 0.947 0.059
GShader [4] 29.37 0.913 0.116 22.53 0.942 0.068
GShader* [4] 29.53 0.915 0.114 22.86 0.943 0.066
3DGS-DR [13] 30.22 0.917 0.115 23.34 0.944 0.066
3DGS-DR* [13] 28.87 0.909 0.125 22.23 0.940 0.074
Ours 30.30 0.933 0.075 24.79 0.959 0.035

Table 5. Quantitative comparison results with state-of-the-art methods on each of the 2 synthetic scenes (TOASTER and MIRROR) and 2
real-world scenes (REALBOWL, and REALPOT). We show example images and the dataset splits of each scene in the leftmost column.
We report the scores of PSNR, SSIM [11], and LPIPS [15] for entire images and within reflective regions. We mark the best and the
second best results in each column. ↑ (↓) means higher (lower) is better.

Scene Method
Entire Image Reflective Region

PSNR↓ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

TOASTER 3DGS [5] 26.26 0.914 0.123 18.77 0.951 0.060
(train: 201, test:100) GOF [14] 26.34 0.924 0.103 18.74 0.951 0.060

GOF* [14] 25.61 0.918 0.115 17.99 0.945 0.070
3iGS [10] 26.71 0.914 0.120 19.34 0.951 0.056
GShader [4] 25.51 0.897 0.146 18.16 0.944 0.070
GShader* [4] 26.07 0.900 0.143 18.77 0.946 0.068
3DGS-DR [13] 25.68 0.885 0.175 18.42 0.949 0.064
3DGS-DR* [13] 25.97 0.871 0.199 18.95 0.947 0.069
Ours 27.73 0.918 0.115 20.39 0.953 0.062

MIRROR 3DGS [5] 26.65 0.938 0.120 18.65 0.963 0.072
(train: 201, test:100) GOF [14] 26.65 0.941 0.112 18.37 0.962 0.074

GOF* [14] 26.74 0.941 0.113 18.52 0.963 0.074
3iGS [10] 27.86 0.939 0.115 19.90 0.964 0.067
GShader [4] 24.61 0.913 0.156 17.52 0.961 0.075
GShader* [4] 25.02 0.917 0.149 17.71 0.962 0.074
3DGS-DR [13] 26.77 0.924 0.145 19.04 0.964 0.069
3DGS-DR* [13] 26.40 0.920 0.152 18.83 0.963 0.075
Ours 28.64 0.938 0.097 20.66 0.963 0.056

REALBOWL 3DGS [5] 25.75 0.832 0.212 20.73 0.967 0.041
(train: 120, test:18) GOF [14] 25.79 0.835 0.202 20.71 0.966 0.039

GOF* [14] 25.59 0.834 0.205 19.81 0.965 0.043
3iGS [10] 25.34 0.819 0.216 20.80 0.967 0.040
GShader [4] 24.76 0.817 0.240 19.68 0.966 0.045
GShader* [4] 24.82 0.819 0.239 19.82 0.966 0.045
3DGS-DR [13] 25.66 0.832 0.227 20.58 0.967 0.042
3DGS-DR* [13] 25.48 0.830 0.236 19.86 0.966 0.045
Ours 26.16 0.839 0.195 22.84 0.973 0.026

REALPOT 3DGS [5] 23.89 0.814 0.245 21.89 0.962 0.056
(train: 121, test:18) GOF [14] 23.94 0.817 0.235 21.78 0.960 0.055

GOF* [14] 23.80 0.816 0.240 21.07 0.959 0.059
3iGS [10] 23.40 0.799 0.249 21.63 0.960 0.055
GShader [4] 23.11 0.802 0.271 20.77 0.960 0.061
GShader* [4] 23.23 0.806 0.267 20.89 0.961 0.060
3DGS-DR [13] 23.91 0.816 0.258 21.78 0.962 0.058
3DGS-DR* [13] 23.71 0.815 0.266 20.90 0.961 0.064
Ours 24.06 0.816 0.230 22.69 0.962 0.044

Ground Truth Ours 3DGS-DR GShader 3iGS GOF 3DGS

H
EL

M
ET

Ground Truth Ours 3DGS-DR GShader 3iGS GOF 3DGS

M
AR

BL
ET

AB
LE

Figure 11. Comparison with state-of-the-art methods on two synthetic scenes: HELMET and MARBLETABLE.

Ground Truth Ours 3DGS-DR GShader 3iGS GOF 3DGS

VA
SE

Ground Truth Ours 3DGS-DR GShader 3iGS GOF 3DGS

PO
T

Figure 12. Comparison with state-of-the-art methods on two synthetic scenes: VASE and POT.

Ground Truth Ours 3DGS-DR GShader 3iGS GOF 3DGS

TO
AS

TE
R

Ground Truth Ours 3DGS-DR GShader 3iGS GOF 3DGS

M
IR

R
O

R

Figure 13. Comparison with state-of-the-art methods on two synthetic scenes: TOASTER and MIRROR.

Ground Truth Ours 3DGS-DR GShader 3iGS GOF 3DGS

R
EA

LB
O

W
L

Ground Truth Ours 3DGS-DR GShader 3iGS GOF 3DGS

R
EA

LP
O

T

Figure 14. Comparison with state-of-the-art methods on two real-world scenes: REALBOWL and REALPOT.

References
[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 13

[2] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. SuperPoint: Self-supervised interest point detec-
tion and description. In Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, 2018. 12

[3] Cycles Developers. Cycles: Open source production render-
ing, 2024. https://www.cycles-renderer.org/.
Accessed: 2024-11-06. 12

[4] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaox-
iao Long, Wenping Wang, and Yuexin Ma. GaussianShader:
3D Gaussian splatting with shading functions for reflective
surfaces. In Proc. of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2024. 14, 15,
16

[5] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D Gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(TOG), 42(4):139:1–139:14, 2023. 12, 14, 15, 16

[6] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Polle-
feys. LightGlue: Local feature matching at light speed. In
Proc. of IEEE/CVF International Conference on Computer
Vision (ICCV), 2023. 12

[7] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko
Friedrich, Jared Hoberock, David P. Luebke, David K.
McAllister, Morgan McGuire, R. Keith Morley, Austin Robi-
son, and Martin Stich. OptiX: a general purpose ray tracing
engine. In ACM Transactions on Graphics (Proc. of ACM
SIGGRAPH), 2010. 11

[8] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 12

[9] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In Proc. of European Confer-
ence on Computer Vision (ECCV), 2016. 12

[10] Zhe Jun Tang and Tat-Jen Cham. 3iGS: Factorised tensorial
illumination for 3D Gaussian splatting. In Proc. of European
Conference on Computer Vision (ECCV), 2024. 14, 15, 16

[11] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing (TIP),
13(4):600–612, 2004. 15, 16

[12] Chongjie Ye, Lingteng Qiu, Xiaodong Gu, Qi Zuo,
Yushuang Wu, Zilong Dong, Liefeng Bo, Yuliang Xiu, and
Xiaoguang Han. StableNormal: Reducing diffusion variance
for stable and sharp normal. In Proc. of the ACM SIGGRAPH
Conference and Exhibition on Computer Graphics and Inter-
active Techniques in Asia (SIGGRAPH Asia), 2024. 12

[13] Keyang Ye, Qiming Hou, and Kun Zhou. 3D Gaussian splat-
ting with deferred reflection. In Proc. of the ACM SIG-

GRAPH Conference and Exhibition On Computer Graphics
and Interactive Techniques (SIGGRAPH), 2024. 14, 15, 16

[14] Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
opacity fields: Efficient adaptive surface reconstruction in
unbounded scenes. ACM Transactions on Graphics (TOG),
43(6):271:1–271:13, 2024. 11, 12, 14, 15, 16

[15] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 15, 16

https://www.cycles-renderer.org/

	Additional Implementation Details
	Implementation of Ray Tracing
	Alignment of Rasteriazion and Ray Tracing
	Training Details
	Tone Mapping

	Data Creation Details
	Synthetic Scenes
	Real-world Scenes

	Additional Results
	Results with Varying Roughness
	Geometry Representation
	Qualitative Ablation Results
	Alignment of Rendering Methods
	More Quantitative Results
	More Qualitative Results

