CAP4D: Creating Animatable 4D Portrait Avatars
with Morphable Multi-View Diffusion Models

Supplementary Material

This document includes supplementary implementa-
tion details and results. We provide implementation de-
tails related to the morphable multi-view diffusion model
(MMDM), 3D morphable model (3DMM), 4D avatar,
datasets, and evaluation procedures; we also provide addi-
tional evaluations and ablation studies. We encourage the
reader to inspect our visual results, comparisons with other
models, and additional visualizations in the accompanying
project page: felixtaubner.github.io/cap4d.

A. MMDM Implementation
A.1. Model architecture

Our model is based on Stable Diffusion 2.1 [10] and il-
lustrated in Fig. SI. We remove all cross-attention layers
and replace the 2D self-attention layers after 2D residual
blocks with 3D attention layers to create the multi-view dif-
fusion model. Following Gao et al. [31], we only modify
the 2D self-attention for layers with dimensions 32 x 32,
16 x 16, and 8 x 8. We also adjust the first convolutional
layer of the model to accommodate the additional condi-
tioning channels and, where possible, initialize all layers
with pre-trained weights.

During training, we update all model parameters and fol-
low Stable Diffusion with the following adjustments. First,
we shift the signal-to-noise ratio of the noise schedule by
log(v/N). Adjusting the noise schedule provides more dif-
fusion steps for the model to learn coarse structures in the
generated images [31, 42]. Second, we find that adjusting
the noise schedule to have zero terminal SNR is vital to
avoid artifacts in the background [56]. Our latent diffusion
model has a total of 815M parameters. We use a classifier-
free guidance weight of 2 during sampling.

A.2. Conditioning

The MMDM takes as input a set of reference or generated
images, and each set is paired with five additional sets of
conditioning images (illustrated in Fig. 3): Vef/gen, view di-
rection maps containing per-pixel view directions in world
coordinates; Pefeen, 3D pose maps with rasterized vertex
positions of the 3DMM template mesh; Eiefgen, €Xpression
deformation maps with rasterized vertex deformation vec-
tors; and Bregjgen, pairs of binary masks that indicate (1)
outcropped areas that are padded with white pixels and (2)
whether the input is a reference or generated image.

Preprocessing steps and binary masks. To create the
reference conditioning images, we first obtain FLAME [53]
parameters, camera intrinsic parameters, and extrinsic pa-
rameters using the 3DMM estimator of Taubner et al. [85].
To create the generated conditioning images, we sample the
FLAME parameters as described in the following section.

We crop the reference images by fitting a bounding box
around the vertices of the 3DMM projected onto the cam-
era image plane. Then, we find the smallest square bound-
ing box that encloses the original bounding box (centered at
the same location) and enlarge the result by 30% to include
the hair, neck, and shoulders; this bounding box is used for
cropping. We resize the cropped image to 512 x 512 res-
olution, adjust the camera intrinsics to be consistent with
this cropped frame, and remove the background using an
off-the-shelf background matting model [55].

Sometimes, the bounding box used to crop the image ex-
tends outside the image boundaries. To perform outcrop-
ping in such regions, we pad the image with white pixels,
and we flag these regions using a binary outcropping mask,
where all outcropped areas are indicated with white pixels.
The MMDM is conditioned on Byefeen, consisting of the
outcropping masks and binary masks that indicate whether
the input is a reference or generated image.

View direction conditioning. We use the camera intrinsic
and extrinsic parameters to compute view conditioning im-
ages, Vief/gen, containing the view direction for each pixel
in world coordinates. The world coordinates are computed
relative to the first reference view, which is positioned at the
origin of the coordinate system with its rotation matrix set
to the identity.

3D pose and expression deformation conditioning. As
described in the main text, we obtain the 3D pose map
Pretigen by texturing the vertices of the tracked 3DMM
model with the 3D vertex positions of the 3DMM template
mesh T. We rasterize these vertex positions and encode the
values using a periodic positional encoding [84]:

7(p) = (sin(2%p), cos(2%p), . .., sin(2"7'p), cos (2"~ 'p)),

(S
where p is the 3D vertex position texture, and L = 7 is the
number of encoding frequencies. This results in 42 posi-
tional encoding channels. We compute Eieggen in a similar
fashion by rasterizing the 3D deformations caused by the
expression blendshape parameters (£(¢)), but we omit the
positional encoding.

reference
image(s)
o N(0.T)
\Encoder@/ \Encoder@/ \Encoder@/ \Encoderg@/ l
latent i i
images
Zref/gen
ray
direction
Vref/gen
3D pose Sass,
maps
Pref/gen
expression
deformation
Eref/gen
outcropping
mask
reference
mask
conv
3D attn R
denoising ()
U-Net
arm——

generated
latents

/Decoder@\ /Decoder@\ /Decoder@\ /Decoder@\

s900

Figure S1. MMDM architecture. Our model is initialized from Stable Diffusion 2.1 [10], and we adapt the architecture for multi-view
generation following CAT3D [31]. We use a pre-trained image encoder to map the input images into the latent space, and we use the latent
diffusion model to process eight images in parallel. We replace 2D attention layers after 2D residual blocks with 3D attention to share

information between frames. The model is conditioned using images that provide information such as head pose, expression, and camera
view. The denoised latent image is decoded using a pre-trained decoder.

generated
1rnages

gen

A.3. MMDM sampling

We follow a fixed sampling procedure to obtain novel gener-
ated views and 3DMM parameters as illustrated in Fig. S2.
We begin by sampling a set of G generated camera views,
where each view is rotated around the center of the head
with a randomly sampled azimuth ¢ and elevation angle 6
(we set the view aligned straight on with the face to have
zero azimuth and zero elevation). The camera is kept at the
same distance from the head as the first reference view. The
values 1 and 6 are uniformly sampled to be within an ellipse
(red line, Fig. S2):
Y

(
wmax
where ax = 55° and O, = 20°.

0

amax

)+ () <1, (S2)

Expression database. We select a unique expression pa-
rameter for each camera view from our expression database.
The database is created using a diversity-promoting sam-
pling scheme (implemented in the diversipy software
package [77]) that partitions the space of expressions ob-
tained from all frames of the Nersemble [50] dataset into
G = 840 dissimilar subsets with a representative sample
for each subset. To determine the distance between each
expression sample, we use Euclidean distance in expres-
sion parameter space ¢ € RY®, where each dimension is
weighted by the maximum vertex displacement of the cor-
responding blendshape.

B. FLAME 3DMM Implementation

The FLAME representation [53] consists of NV, = 5023
vertices, which are controlled by identity shape parame-
ters 3, expression shape parameters ¢, and skeletal joint
poses through linear blend skinning. We ignore the jaw
pose and use the FLAME2023 model, which includes de-
formations due to jaw rotation within the expression blend-
shapes. Overall, there are 3 € R° identity shape param-
eters and ¢ € RY® expression parameters. To model eye
rotation, we use one joint rotation for both eyes. Each ver-
tex position is determined by adding expression and identity
shape offsets to the template mesh T, and the offsets are
computed using the expression and identity shape parame-
ters and the corresponding linear bases, £ and S:

m =T + £(¢p) + S(3). (S3)

We use an edited version of the FLAME template mesh
to create the conditioning signals used by the MMDM.
More precisely, we manually position a spherical mesh in-
side the mouth region and behind the lip to represent the
upper jaw. This sphere is static and unaffected by the ex-
pression shape parameters ¢p. We remove the lower neck
vertices and limit the conditioning model to the head region.

For the representation used by the 4D avatar, we add
a spherical mesh to model the lower jaw. This sphere is
placed similarly to the upper jaw mesh, but it is rigged
to move with the jaw joint. We compute the jaw rotation
heuristically by tracking the deformation of a specific ver-
tex on the lower jaw relative to the jaw joint position ob-
tained from the FLAME model. We adopt the UV mapping
provided by previous work [28] and modify it manually to
add textures for the upper and lower jaw meshes.

C. 4D Avatar Implementation

Our 4D avatar model is based on GaussianAvatars [71] with
a few modifications to make it more robust to generated
views. We describe these changes in the following and il-
lustrate the approach in Fig. S3.

Deformation model. We disable the per-frame fine-
tuning of FLAME parameters used by GaussianAvatars dur-
ing training as we find that it leads to overfitting. To correct
inaccuracies in the underlying 3DMM, we use a U-Net to
deform the mesh with expression-dependent deformations.

The input to the U-Net consists of UV maps that en-
code the expression deformations and positional encodings
of UV map pixel locations. To compute the expression de-
formation map, we first remesh the FLAME head to achieve
pixel-aligned vertices in UV space at a 128 x 128 resolution.
Then, we rasterize the deformations caused by the expres-
sion parameters £(¢) into UV space. We obtain a positional
encoding of the UV space by encoding the UV coordinates
with the same periodic functions as in Eq. (S2), where we
set the number of frequencies to L = 6 and the coordinate p
to the UV-space coordinate of each pixel, leading to a total
number of 24 encoding channels. The positional encoding
is concatenated to the UV-space expression deformation and
processed by a 6-layer U-Net [75].

The U-Net outputs a 3-channel deformation map, D,
(see Fig. S3) indicating the expression-dependent deforma-
tion correction. We mask this deformation to prevent de-
formations in static areas such as the back of the head and
lower neck. To obtain the final vertex positions, we add
these deformations to the vertices produced by the FLAME
model.

During training, we use multiple regularizers to pre-
vent motion artifacts. First, we apply a weight decay of
2 x 1073 on the U-Net weights; second, we use an L2 loss
Liap = ||ADyy||3 on the Laplacian of the deformation map;
last we append an L2 loss on the relative deformation and
rotation of each Gaussian Lgeform and L. We logarithmi-
cally decrease the learning rate of this network from 10~°
to 10~7 during training.

20

10 -

DD

A
LW

~10 - o,
20 4 e t!-.'t-_:e_-

-60 -40 —20 o 20 40 60
azimuth angle [degrees]

elevation angle [degrees]
°
1

N
|~

DR
JSORDDD

8

%

J,
DRDEDED

A

D

view angle distribution

(\

1 Q §
g2 9
@@
0eQ

DD
DD
D IDIDD
DDDD

mn@@
3@@@

[
o

al Vi

—-

pl ews and expre%swn%

Figure S2. 3DMM Sampling. To generate novel views, we uniformly sample in azimuth and elevation (left). For each camera view,
we select unique expression parameters from our expression database, which is obtained from the Nersemble dataset [50] following a
diversity-promoting sampling scheme [77]. A subset of the sampled expressions and views is visualized on the right.

=

expression
deformation
.

positional deformation
encoding U-Net

——— UV-space deformation adjustment

corrective
deformation mask

. GT

Gaussians
parameters

s, i, r, hy o, i

(binding)—»

original vertices

o).
A4

corrected vertices

render

Figure S3. Overview of 4D Avatar Model. Our 4D representation incorporates multiple improvements to the GaussianAvatars [71]
model. First, we re-mesh the FLAME topology so that each vertex corresponds to a pixel in the UV space. Then, we input the UV-space
deformations caused by the expression blendshapes and a UV-space positional encoding into a deformation U-Net. This U-Net outputs
corrective deformations, which, after masking, are added to the remeshed FLAME output. Following Qian et al. [71], the Gaussians are
parameterized by a scale s, local position u, local rotation r, spherical harmonics coefficients h, opacity «, and parent triangle i. We apply
regularizers to the output of the U-Net, and we add an LPIPS penalty to the photometric 1oss Lrgp.

LPIPS loss. To make the reconstruction more robust
to inconsistencies in the generated views, we add an
LPIPS [110] loss to the existing photometric loss from
GaussianAvatars [71] and weight it against the other term:

Ligo = ArpipsLpips + (1 — ALpips) Ligh.Ga, (S4)

where Apppps is the weighting of LPIPS loss, which we lin-
early increase from O to 0.9 during training. Lypca is
the original photometric loss from GaussianAvatars. We
also include their scaling and positional losses Lcating and
Lposition» resulting in the modified total loss function:

L= Lrgb +)\deformﬁdeform + /\rotErot + Escaling + [’positiom
(S5)
where Ageform = 0.4 and Ao = 0.005 are the weights for
the corresponding losses. For more information on these
loss functions, we refer to GaussianAvatars [71].

Other changes. We attach the Gaussians to the triangles
of the re-meshed FLAME model. Each Gaussian contains

a scale s, local position i, local rotation r, spherical har-
monics coefficients h, opacity o and parent triangle i. We
initialize the avatar with 100k Gaussians, where the num-
ber of Gaussians for each triangle is proportional to the area
of the triangle. Also, we set each Gaussian’s initial scale
to be inversely proportional to the number of Gaussians per
triangle, which we find to reduce rendering artifacts.

D. Datasets

We train the MMDM using the monocular video dataset
VFHQ [94], and the multi-view datasets Nersemble [50],
MEAD [90] and Ava-256 [64]. For MEAD, we use the
sequences with neutral emotions. For Ava-256, we ran-
domly select 20 sequences with 16 forward-facing camera
views for each subject. We jointly estimate 3DMM param-
eters, camera extrinsics, and intrinsics using a multi-view
face tracker [85]. For Nersemble and Ava-256, we use the
available camera calibration. We remove frames where less
than 95% of the head is visible. For VFHQ, we detect and

single reference image

|SSIM+ AED | APD| AKD |

1.463 0.085 10.52
1.076 0.069 13.01
1.561 0.118 1591
1.291 0.121 19.97
0.707 0.041 5.82
0.782 0.041 5.68

10 reference images

|SSIM + AED | APD | AKD |

0.624

0.930 0.084 17.8
1.243 0.124 20.8
1413 0.237 215

1.064 0.093 10.6
0.542 0.033 5.09
0.782 0.041 5.68

100 reference images

|SSIM 1 AED | APD | AKD |

0.617
0.741
0.713

0975 0.085 18.6
0.689 0.042 6.16
0.737 0.062 9.01

Method
Voodoo3D [88] 0.658
GAGAvatar [19] 0.718
Real3D [102] 0.667
Portrait4D-v2 [23] | 0.651
MMDM only 0.730
CAP4D 0.748
I
Method
DiffusionRig [24]
FlashAvatar [93] 0.580
GaussianAvatars [71]| 0.628
no MMDM 0.590
MMDM only 0.753
CAP4D 0.748
|
Method
DiffusionRig [24]
FlashAvatar [93]
GaussianAvatars [71]
no MMDM
MMDM only
CAP4D

0.675
0.754
0.763

0.653 0.058 7.88
0.535 0.032 5.07
0.634 0.035 5.21

Table S1. Additional single-image (top) and multi-image (middle, bottom) self-reenactment metrics. Our method consistently outper-
forms baselines in terms of expression accuracy (AED), photometric quality (SSIM), and alignment accuracy (AKD).

Method

Voodoo3D [88]
GAGAvatar [19]
Real3D [102]

Portrait4D-v2 [23]

Ours

| AED | APD |
2428 0.082
2137 0.079
2.581 0.104
2.084 0.071
2.138 0.089

Table S2. Additional cross-reenactment metrics. We report additional metrics for our cross-reenactment evaluation.

remove videos with scene changes by checking the acceler-
ation of the keypoints detected using the face tracker. Also,
we use MediaPipe [109] to detect and remove frames con-
taining hands, and we use the face tracker to detect and re-
move frames containing multiple faces. We estimate the
gaze direction using a gaze estimation model [1] and con-
vert it to the eye rotation of the FLAME model. In the multi-
view sequences, we use the most forward-facing view to es-
timate the eye gaze. During training, we randomly select R’
reference images and G’ target images from all views and
frames within a sequence with equal probability.

E. Evaluation

In this section, we provide details on our implementation,
additional evaluation metrics, and additional ablations.

E.1. Implementation

We use the same predicted FLAME parameters to evaluate
our method and our implementations of FlashAvatar [93]
and GaussianAvatars [71]. The FLAME expression and
identity shape parameters are extracted for each set of ref-
erence images [85]. Then, we fit expression parameters to
the target frames while preserving the identity parameters.

All metrics for self-reenactment are measured after
center-cropping to the head region, resizing to 512 x 512
resolution, and removing the background using masks in-
cluded in the Nersemble dataset.

For cross-reenactment, we orbit the camera around the
head to allow a better assessment of 3D geometry. This
orbit follows an elliptic trajectory defined by the maximum
azimuth and elevation angles of £55° and £20° relative to
the center of the head. The camera performs one rotation
around the head every 8 seconds.

ref. image F-Y-Emoji GAGAvatar MMDM only CAP4D

ref. ‘maes GaussAvatars MMDM only CAP4D

Figure S4. Qualitative results on RenderMe-360. Rendered novel views for a 80° view angle change compared to a single ref. image
(left) and 5° outside the convex hull of view angles for 100 ref. images (right). Our method outperforms the baselines (please zoom in).

| single reference image

| 10 reference images | 100 reference images

Method | PSNRT LPIPS| CSIMt JOD? Method |PSNRt LPIPS| CSIM1 JOD?|PSNRt LPIPS| CSIM? JODt
F-Y-Emoji [61] 16.67 0297 0.431 435 FlashAvatar [93] 23.12 0.251 0457 596 | 2432 0.208 0.628 6.60
GAGAvatar [19] | 20.50 0.225 0428 5.83 GaussianAvatars [71]| 20.95 0.282 0.573 5.46 | 2424 0.219 0.722 6.61
MMDM only 21.73 0191 0.617 6.01 MMDM only 2521 0.144 0.794 6.96 | 25.31 0.144 0.799 6.98
CAP4D 21.01 0212 0.490 6.08 CAP4D 2458 0.171 0.722 6.74 | 2447 0.171 0.733 6.73

Table S3. Self-reenactment results on the RenderMe-360 dataset. CAP4D outperforms previous methods across all metrics.

E.2. Additional Metrics

We provide results with the structural similarity metric
SSIM, and following previous work [19, 51], we evaluate
the average expression distance (AED) and average pose
distance (APD) predicted using DECA [28] for both self
and cross-reenactment. For cross-reenactment, only the jaw
pose distance is used. We measure the average keypoint
distance (AKD) using facial landmarks predicted from a
keypoint detector [13]. We report these additional metrics
for self-reenactment with different numbers of reference
images in Tab. S1, and for cross-reenactment in Tab. S2.
The metrics show that our approach outperforms the base-
lines for the self-reenactment task. For cross-reenactment,
our method and the baselines all have similar quantitative
scores, but our approach shows clear improvements, as
demonstrated in the user study and qualitative results.

E.3. User Study

For each video pair, we ask each participant questions to

assess their preference in the following criteria using the

following prompts.

¢ Visual Quality (VQ): Evaluate the clarity and visual ap-
peal of each video. Your assessment should focus on the
face and head region and ignore the neck and upper body.

* Expression Transfer (EQ): Determine which generated
avatar’s facial expressions better match the driving video.

¢ 3D Structure (3DS): Assess how well the 3D structure
of the head is preserved across different viewing angles
and expressions.

¢ Temporal Consistency (TC): Examine how smoothly
and naturally the avatar maintains consistent appear-
ance, expression, and movement across consecutive video
frames.

¢ Overall Preference (OP): State your overall preference
between the two videos. This is your subjective appraisal
of which avatar, in your view, performs better.

The video pairs are presented in a random order, and
each participant is asked to select either the left or right
video for each criterion. We collect a total number of 4800
responses from 24 participants and conduct x?-tests to eval-
uate statistical significance at the p < 0.05 level.

E.4. Self-reenactment on RenderMe-360

We conduct additional self-reenactment experiments using
the RenderMe-360 dataset [67]. We follow Sec. 5.1 and
randomly sample 9 subjects (one sequence per subject). We
select the 19 out of 60 camera views from the dataset within
the same view angle range as our Nersembled evaluation set
(Sec. 5.1). From these 19 views, we hold out eight random
views for evaluation (with 25 frames each) and sample ref-
erence images from the remaining viewpoints. For this eval-
uation, we add the video-based baseline Follow-Your-Emoji
[61]. Since this is a video-based method, we generate one
video for each view. The quantitative (Tab. S3) and qualita-
tive (Fig. S4) results follow the trends in the paper: CAP4D
also outperforms previous methods on this dataset.

E.5. Additional Results

We provide additional self-reenactment and cross-
reenactment results in Figs. S5 and S6. For self-
reenactment, we directly compare our method to baselines
with one, ten, or 100 reference images. As the number of
reference images increases, our approach (both MMDM-
only and CAP4D) improves in quality. With 100 reference
images, we recover fine details in the hair and blemishes
on the face. Our approach better preserves the identity and
exhibits higher visual fidelity compared to baselines in the
case of one reference image. We improve photorealism
compared to baselines using ten or 100 reference images.
The cross-reenactment results show trends similar to those
in the main text. Compared to baselines, CAP4D better
preserves the identity and fine details of the hair, face, and
attire.

MMDM only

| 4
| 4

reference image Voodoo3D Portrait4D-v2

v R
3

reference i images DiffusionRig Gaussw.nAvatars FlashAvatar MMDM only

reference i 1mage Voodoo3D Portrait4D-v2 GAGAvatar MMDM only

7

reference images DiffusionRig GaussianAvatars FlashAvatar MMDM only

Cj.
3

reference image Voodoo3D Portrait4D-v2 GAGAvatar MMDM only .
. g ’ GT

EEEE S

2peRRRRDE

MMDM only CAP4D

60688888
reference images DiffusionRig

GaussianAvatars FlashAvatar

Figure S5. Self-reenactment results. We show more qualitative results for our self-reenactment evaluation with varying numbers of
reference frames. Both our MMDM and final 4D avatar can leverage additional reference images to produce details that are not visible
in the first reference image (hair, top three rows: birthmarks, last three rows). Our results are significantly better compared to previous
methods, especially when the view direction differs greatly from the reference image.

reference image driving image Voodoo3D Real3D Portrait4D-v2 GAGAvatar CAP4D

Figure S6. Cross-reenactment results. We show additional qualitative results of our cross-reenactment evaluation. We show generated
frames under different driving expressions and viewing angles. Our method consistently produces 4D avatars of higher visual quality and
3D consistency even across challenging view deviations. Our avatar can also model realistic view-dependent lighting changes (rows 5 and
6). Best viewed zoomed in.

generated images with stochastic I/O sampling

generated images w/o stochastic I/O sampling

reference image

\I)\I J

Figure S7. Ablations on stochastic I/O sampling. We generate 14 images from a single reference image (left). Parts of the body do
not appear in the reference image (shirt) and are thus ambiguous. When we generate these images without stochastic I/O sampling, two
batches of seven images are generated separately (i.e., the third and last rows). This results in visible inconsistencies, such as a changing
shirt pattern (red boxes). Stochastic sampling (first and second row) generates these images with information shared across all frames,
resulting in a consistent shirt appearance.

Vanilla-GA no LPIPS

no U-Net Ours GT

Figure S8. Ablations on 4D avatar. We show qualitative results with ablations of our 4D avatar for self-reenactment, using 10 reference
images and images generated using the MMDM. From the left: The original implementation of GaussianAvatars without modifications
(Vanilla-GA), our model without LPIPS loss (no LPIPS), our model without the U-Net correcting deformations (no U-Net), our final
version (Ours), and the ground truth (GT). Without LPIPS, the avatar appears significantly blurrier. With the U-Net deformations, dynamic

details such as wrinkles are depicted more accurately (wrinkles in (a)), and expressions are depicted overall more accurately (lips and
nasolabial fold in (b)).

Category Ablation |PSNR + LPIPS | CSIM 1 JOD 1
sampling w/o stochastic 21.60 0.325 0.625 531

(single ref.) Ours 21.82 0.317 0.632 540
w/o stochastic 21.50 0.320 0.624 5.60

4D re G =420 21.37 0328 0.620 5.48
P Ours (G =840)| 21.69 0311 0.633 5.67

G = 1260 21.71 0.313 0.632 5.69

Table S4. Additional ablations. We assess the impact of our
stochastic I/O conditioning with a single reference image. Also,
we show the impact of stochastic I/O conditioning and the number
of generated images on the 4D reconstruction.

Ablation |PSNR{ LPIPS | CSIM1 JOD 1 time (min)

R'=3,G'=5| 2372 0277 0.793 5.99 224
R'=4,G'=4| 2382 0270 0804 6.06 298
R'=5,G'=3| 2394 0264 0810 6.13 374

Table S5. Ablation study on the number of ref. images R'.
E.6. Additional Ablation Study

Stochastic I/0 sampling. We conduct experiments with
and without the stochastic /O sampling on the self-
reenactment task with a single reference image, and re-
port the results in Tab. S4. With only a single reference
image, stochastic sampling improves image quality (PSNR
and LPIPS) and consistency between frames (JOD).

In Fig. S7, we generate an example set of 14 images.
Inconsistencies such as changing shirt patterns appear with-
out stochastic sampling, whereas using stochastic sampling
improves overall consistency.

4D avatar. We conduct additional ablations on the ten-
reference-image self-reenactment task (see Fig. S8 and
Tab. S4); we show the impact of our improvements to
the GaussianAvatars representation [71] and the impact of
stochastic I/O sampling and varying the number of gener-
ated images on the quality of the 4D avatar. Qualitatively,
adding the LPIPS loss and expression-dependent deforma-
tions predicted by the U-Net improves the ability to recon-
struct wrinkles and expression-dependent details (Fig. S8).
The number of generated images also affects the quality
of the avatar. Specifically, we evaluate generating G = 420,
840, or 1260 images and reconstructing the avatar. When
generating fewer images, we observe worse reconstruction
(LPIPS); adding additional images beyond G = 840 does
not significantly improve the results, but requires additional
compute. We also find that stochastic sampling improves
the 4D avatar in terms of PSNR, LPIPS, CSIM, and JOD.

Number of reference images in the MMDM. We ablate
the number of reference images used in the MMDM for
each forward pass (Sec. 3.1, Fig. S1) in Tab. S5. We use
R’ =[3,4,5] (and G’ = [5,4, 3]) and show that a higher R’
(lower G") leads to better results on self-reenactment with
10 reference images, but requires more compute/forward
passes to generate the 400 evaluation frames (Algorithm 1).
Results in the paper use R’ = G’ = 4.

—e— 4D Avatar
—=— MMDM only

0.31 4

0.30 4

0.29 4

0.28 4

LPIPS

0.27 4

0.26 1

0.25 4

1(')O 1('1‘ 1('12
number of reference images
Figure S9. Analysis of Reference Quanitity. We observe
that with hundreds of reference images, the performance of the
MMDM plateaus, while our 4D avatar continues scaling with the
input quantity. This shows that the 4D avatar can seamlessly ben-
efit from both generated and reference images.

reference images

=3

a) b) c) d

Figure S10. Failure Cases. (a) Our training dataset contains some
images that were not properly filtered out using our automated
pipeline, and so the MMDM sometimes generates images where
the face is occluded (e.g., by a hand). (b) Some training images
contain a faulty background segmentation, occasionally leading to
artifacts in the MMDM output. (c) Our 4D avatar can fail in areas
not modeled by the FLAME topology, such as glasses and (d) long
hair.

More total reference images. Finally, we conduct an ad-
ditional experiment with 400 reference images, which we
evaluate in the same way as the previous experiments on
the self-reenactment task. Evaluations (plotted in Fig. S9)
show that while the performance of our MMDM plateaus,
the final 4D avatar can leverage and scale with hundreds
of reference images. This is likely because the 4D avatar
can improve its reconstruction from the reference images
through the direct optimization procedure.

E.7. Failure Cases

We show failure cases for the MMDM and the 4D avatar
in Fig. S10. Specifically, we find that some generated im-
ages reflect imperfections in our training dataset, such as
images where a hand occludes the face, or images where
there are artifacts due to imperfect background segmenta-
tion. Also, the 4D avatar cannot model certain regions per-
fectly, such as hair or glasses, since these are not modeled
in the FLAME topology.

