
Do We Always Need the Simplicity Bias?
Looking for Optimal Inductive Biases in the Wild

Supplementary Material

A. Reviewers’ FAQ
This section contains interesting questions raised during the
review of this paper (paraphrased) and our answers.

Why use MLPs instead of CNNs or ViTs for example?
The choice of unstructured MLPs is deliberate. Since the
primary goal is to discover optimal inductive biases via op-
timization, it makes sense to start with architectures that im-
pose little initial constraints.

Can the proposed method for learning activation func-
tions be applied to other architectures? In principle yes,
but the bi-level optimization is expensive. We did not at-
tempt to use it with large models. This method is meant as
an exploratory tool, and the insights it delivered are much
more fundamental. They could serve in the design/selection
of future architectures independently of this optimization
method. For example, Teney et al. [96, Fig. 5] already eval-
uated how various components (e.g. attention) can nudge
inductive biases in ways similar to activation functions.

Why is the scale of TV values different across datasets?
TV values are not comparable across datasets because of the
different distances between data points in input space.

Are learned activation functions more akin to pre-
trained initialization than architecture choices? Not re-
ally, because initializations can vanish with enough itera-
tions of fine-tuning, while the effects of activation functions
remain. However, it is true that parametrized activations
carry more information than typical architecture choices.

B. Related Work

Inductive biases in deep learning are due to choices of
architecture [33] and of the learning algorithm (optimizer,
objective, regularizers [50]). We focus on the former. The
simplicity bias has been studied from both aspects. Most
explanations attribute it to loss functions [70] and gradi-
ent descent [7, 40, 60, 92]. But work on untrained net-
works shows that it can be explained with architectures
alone [15, 31, 64, 96, 99]. Teney et al. [96] showed that
the choice of activation function can modulate the simplic-
ity bias. The spectral bias [48, 75] or frequency princi-
ple [104] is a related but different effect related to training
dynamics: NNs approximate low-frequency components of
the target function earlier during training with SGD.

Suitability of the simplicity bias. The tendency of NNs to
represent simple functions is thought as the key why over-
parametrized networks avoid overfitting [8, 71]. Schmidhu-

ber [83] even proposed to regularize a model’s Kolmogorov
complexity to improve generalization. The preference for
simplicity aligns with Occam’s razor, a philosophical prin-
ciple whose (absence of) justification has long been de-
bated [66, Appendix A]. Domingos [19] discussed argu-
ments against Occam’s razor for knowledge discovery.

Side-effects of the simplicity bias. The simplicity bias is
responsible for shortcut learning [29, 74, 93] and for am-
plifying performance disparities [9]. A vast literature ad-
dresses shortcut learning with alternative losses [74], ar-
chitectures [41], diversification mechanisms [1, 94, 95], etc.
No study has however addressed its root cause, which we
pinpoint to architectural choices, activation functions in par-
ticular. The simplicity bias is also detrimental in the use of
NNs for scientific computing such as solving PDEs [106,
Section 5.4]. A solution relevant to activation functions
was proposed in MscaleDNNs [57] by restricting them to
a compact support. The simplicity bias makes it difficult
for implicit neural representations to represent sharp im-
age edges for example [78]. The prevailing solution is to
replace activation functions with sines [88], Gaussians [77],
or wavelets [80]. Fourier features [86] are another solu-
tion, in fact mathematically equivalent to periodic activa-
tions [103, Sect. 5]. With tabular data, NNs are known
to often perform poorly [20, 35]. Solutions include Fourier
features and numerical embeddings [32, 55] which can be
seen as special cases of learned activation functions. In re-
inforcement learning, a few studies have suggested that the
spectral bias of typical architectures may be suboptimal [53]
and have experimented with Fourier features [107] and sine
activations [62]. These examples support our message that
the simplicity bias is not always desirable. They also sup-
port the search for new activation functions to modulate it.

Activation functions are key for introducing non-
linearities in NNs. Many options were considered early
on, e.g. sine activations in the Fourier Neural Networks
from 1988 [27]. ReLUs are often credited for enabling the
rise of deep learning by avoiding vanishing gradients [61].
However they are also essential in inducing the simplic-
ity bias [96] which may be just as important. The re-
search community has slowly converged towards smooth
handcrafted variants of ReLUs such as GeLUs [21, 39, 76].
Some works proposed to learn activation functions using
extra parameters optimized alongside the weights of the net-
work [2, 5, 6, 11, 13, 22, 45, 82, 91]. See Jagtap and Karni-
adakis [44] for a comprehensive review. The goal is to bet-
ter fit the training data with an activation function that can

evolve during training. In contrast, we use meta learning
to find an activation function that induces better inductive
biases, such that training with this fixed activation provides
better generalization. This requires bi-level optimization,
episodic training, and unbiased parametrization that allows
us to learn activations very different from existing ones.
Kolmogorov-Arnold Networks [59] parametrize the con-
nections in a NN, which is equivalent to learning different
activation functions across channels and layers. They use a
parametrization as splines similar to ours. Their benefits in
physics-related problems likely result from the alterations
to the inductive biases studied in this paper. Our method
differs from neural architecture search [100] in its ability
to discover novel activation functions from scratch, rather
than selecting from predefined candidates [91] or restricted
parametric functions [3].

C. Method for Learning Activation Functions
This section provides details about the proposed method.
Novelty. Our method is designed to support an analysis of
inductive biases and their effects in two steps.
1. Learning an activation function optimized for gener-

alization on a specific dataset.
2. Using this new fixed activation function to train a net-

work “as usual”, such that the trained model can be ana-
lyzed and compared with any other e.g. a baseline ReLU
architecture.

Our method is therefore very different from most existing
works about learning activation functions [2, 5, 6, 11, 13, 22,
45, 82, 91]. These usually train the model weights and acti-
vation function together for the same objective i.e. fitting the
training data. In our formulation, the activation function is
trained for a different objective i.e. maximizing generaliza-
tion. We exploit this in Section 3.4 (Shortcut Learning) by
simulating in-domain (ID) and out-of-distribution (OOD)
conditions. Each setting then learns a different activation
function that prioritizes the learning of different features.
Parametrization as splines. We parametrize the learned
activation functions as splines such that we can learn func-
tion with arbitrary, irregular shapes if needed. This con-
trasts with existing works on the learning of activation func-
tions that constrain the search e.g. to combinations of exist-
ing activations [91], a small MLP [5], or other parametric
functions [3]. A parametrization as splines was already used
by Scardapane et al. [81] and in work concurrent to ours on
Kolmogorov-Arnold networks [59]. Some technical details:
• The parametrization takes three hyperparameters nc, a, b.
• nc specifies the number of control points, typically 50.
• The control points are spread regularly in the [a, b], typi-

cally [−5,+5] to cover typical activation values.
• A spline then represents piecewise linear segments that

interpolate the values specified in the parameters ψ :=

[gψ(a), . . . gψ(b))] ∈ Rnc . Outside [a, b], g extrapolates
the values of g(a) and g(b).

• In our exploratory work, we compared this piecewise lin-
ear version with cubic splines, which are smoother but
computationally more expensive. Both performed simi-
larly. We also compared it with a faster nearest-neighbor
interpolation of control points. This performed much
worse than the piecewise linear version.

Implementation of the algorithm. We reproduce the
complete procedure below. The model fθ,ψ represents any
chosen architecture with weights/biases θ and activation
functions parametrized byψ. The gradient updates GD(·, ·)
are described as full-batch updates, but they can be imple-
mented with any optimizer e.g. mini-batch SGD or Adam.

Algorithm 1 Meta-learning an activation function (AF).

Input: training data T ; untrained neural model fθ,ψ
Initialize ψ with zeros Parametrization of AF
ntr ← 0 Number of inner-loop iterations

while ntr < nmax
tr Outer loop: train AF

Increment ntr

Sample the episode’s tr. (T ′) and val. (V) sets from T
Initialize θ randomly Model weights and biases

for ntr steps Inner loop: train model with fixed AF
Eval. loss on T ′: L← Σ(x,y)∈T ′ L

(
fθ,ψ(x,y)

)
Gradient step on weights/biases: θ ← GD(θ,∇θL)

Eval. loss on V: L← Σ(x,y)∈V L
(
fθ,ψ(x,y)

)
Gradient step on AF: ψ ← GD(ψ,∇ψL)
if performance on V worsens then break Early stopping

Output: optimized AF ψ

The bi-level optimization is expensive since every outer
iteration trains the model from scratch. We mitigate this as
follows. First, we train small-width models. Section 3.3
shows that the learned activations subsequently transfer to
wider models. Second, we do not train the model to con-
vergence in the inner loop. Instead, we progressively in-
crease the number of inner iterations. This reduces the com-
putational expense and makes the inner task progressively
harder. Third, second-order derivatives (i.e. backpropagat-
ing through the inner gradient updates) are only computed
over the last t inner steps (typically t=5). Our exploratory
work found this to be better than a complete linearization
(no second-order derivatives) and vastly cheaper than back-
propagating through the whole inner loop (which was not
even testable at all because of the required GPU memory).

Optimization. The optimization of the activation function
in Algorithm 1 proved to be a very difficult non-convex

problem with many local minima. We tried various opti-
mizers for the gradient updates on ψ (SGD with and without
momentum, RMSprop). No option was consistently better.
We also tried to run multiple instances of the inner loop in
parallel (with several models initialized differently) to sta-
bilize the gradients ∇ψL. However this usually provides
worse solutions, indicating that exploration is indeed bene-
ficial to avoid local minima.

A simple but effective workaround is to use vanilla gra-
dient descent with restarts, i.e. running Algorithm 1 with a
different:
• random seed,
• learning rate to update ψ in [0.01, 0.2],
• number of control points nc ∈ [50, 400],
• number of inner steps backpropagated through t ∈ [1, 50],
• initialization as zeros or as a ReLU.
This is enough to learn slightly different activation func-
tions. We then keep the best one according to its perfor-
mance on the validation set after using it to retrain a model
from scratch (as a fixed activation function) .

D. Ablations of the Proposed Method
We evaluate below the design choices of the proposed
method to learn activation functions. We perform these
experiments on the image regression task with FASHION-
MNIST and 1-hidden layer MLPs We report averages and
standard deviations over 10 random seeds. See Section E.2
for other experimental details. See the captions of Tables 1–
3 for the takeaways of each experiment.

Table 1. Evaluation of the variance across runs (over 10 random
seeds and 4 restarts). It is quite similar for the baseline and the
learned-activation models. The latter models obtain a higher accu-
racy on average. These results verify that the improvements from
the learned activations are not simply due to running more trials
with more chances of finding a “lucky run”. We also show that
the restarts (i.e. running the optimization with multiple hyperpa-
rameters, see Section C) help find a better solution but are not
indispensable to obtain an improvement over the baseline.

Activation function Accuracy (%)

ReLU baseline 53.1 ± 0.4
Learned, average across restarts / hyperparameters 56.6 ± 0.7
Learned, best across restarts / hyperparameters 57.2 ± 0.5

Nearest-neighbor Linear spline Cubic spline

Figure 15. Activation functions learned with different interpola-
tion methods. The linear and cubic ones are nearly identical.

Table 2. Evaluation of different interpolation methods to represent
learned activation functions. The nearest-neighbor interpolation is
cheap to evaluate but performs the worst. The linear one (used in
all our experiments) is almost identical to the cubic one (in appear-
ance and performance) while being faster to evaluate.

Activation function Accuracy (%)

ReLU 53.1 ± 0.4
Learned, nearest-neighbor interpolation 55.1 ± 0.9
Learned, linear spline (default) 57.2 ± 0.5
Learned, cubic spline 57.3 ± 0.7

Table 3. Evaluation of different outer-loop objectives. The naive
version simply optimizes the activation for minimum loss on the
training data, but this is suboptimal. Ideally, one would like to
optimize the loss on the test data (which would require cheating
by accessing the test labels). We approximate it by optimizing
on held-out validation data, which the results show to be about as
good (the last row would is expected to be the best without any
evaluation noise).

Activation function Accuracy (%)

ReLU 53.1 ± 0.4
Learned to minimize loss on training data (naive) 56.7 ± 0.3
Learned to minimize loss on validation data (default) 57.2 ± 0.5
Learned to minimize loss on test data (cheating) 56.9 ± 0.5

E. Experimental Details & Additional Results
E.1. General Experimental Details
When training MLPs on a given dataset, we first tune standard hyperparameters for the best validation accuracy using
ReLUs (optimizer, batch size, learning rate). We reuse these hyperparameters for all other experiments on this dataset, i.e.
we do not tune them again for the learned activation functions. Every experiment uses early stopping i.e. we keep the model
at the training step with the best validation accuracy.

All experiments were run on a single laptop (Dell XPS 15) with an Nvidia RTX 3050 Ti (4 GB of GPU memory).
Variance in the results. In order to make the analysis of results stable and consistently reproducible, we use two inter-
ventions that greatly reduce the variance across seeds and training iterations. First, the models are trained with large- or
full-batch gradient descent (typically 4096 examples per mini-batch). This eliminates most of the variation across seeds.
Second, we use a simple stochastic weight averaging (SWA). That is, when evaluating a model, we use the average of the
optimized weights over the last 50 training steps. This consistently improves the accuracy of all models, but it does not alter
the training trajectories (by design) and we verified that it does not alter the ranking of models. The main advantage here is
that it greatly stabilizes the performance across training iterations, i.e. the training curves are much smoother hence easier to
analyze.

E.2. Image Datasets

Data. We use slightly cropped versions of the images in the original datasets. This makes the data and models smaller and
allows us to run a larger number of experiments with limited computational resources. This makes the tasks slightly more
difficult, hence the accuracies being lower baselines reported in prior work. For MNIST, we crop 5 pixels on every side. For
SVHN, we crop 8 pixels on each of the the left and right sides.
Architecture. We use fully-connected MLP. Given that our goal is to evaluate the inductive biases induced by the choice
of activation function, MLPs minimizes the possible interactions with other architectural components that would complicate
the analysis.

The only improvement over vanilla MLPs is the inclusion of residual connections. After each hidden layer, the output of
the activation function is summed with the input to the layer (from before the application of weights and biases). This never
hurts the accuracy, and helps when learning different layer-specific activations functions.

For each dataset, we trained MLPs with 1 to 4 hidden layers, both with ReLUs and learned activation functions. Our main
results retain the MLP whose depth is best for each activation function. We provide in Figure 17 the full results for every
depth. We can see that the best number of layers is sometimes different across activation functions.
Regression tasks. We use the same data as the image classification tasks. The ground-truth regression targets are the
class IDs {0, 1, ..., 9} that we normalized to [−1, 1]. I.e. we assign to the classes values regularly spread within [−1, 1].
This normalization is standard practice for regression models to make the optimization numerically easier. The MLP models
output a single scalar with their last layer with no softmax or sigmoid.
Additional results. We provide below results on all four image datasets. The main paper only includes results on MNIST
for space reasons, but similar observations can be made on the others.

Classification Regression

MNIST

FASHION-MNIST

SVHN

CIFAR

Figure 16. Activation functions learned for image datasets treated
as classification or regression tasks. The activation functions
learned for regression contain more irregularities. These help net-
works represent complex functions with sharp transitions.

Classification Regression

MNIST

1 2 3 4
Number of hidden layers

95

95.5

96

96.5

97

Ac
cu

ra
cy

 (
%

)

1 2 3 4
Number of hidden layers

20

40

60

Ac
cu

ra
cy

 (
%

)

FASHION-MNIST

1 2 3 4
Number of hidden layers

50

60

70

Ac
cu

ra
cy

 (
%

)

1 2 3 4
Number of hidden layers

86

86.5

87

87.5

88

Ac
cu

ra
cy

 (
%

)

SVHN

1 2 3 4
Number of hidden layers

76

78

80

82

Ac
cu

ra
cy

 (
%

)

1 2 3 4
Number of hidden layers

30

35

40

45

50

Ac
cu

ra
cy

 (
%

)

CIFAR

1 2 3 4
Number of hidden layers

48

49

50

51

Ac
cu

ra
cy

 (
%

)

1 2 3 4
Number of hidden layers

16

18

20

22

Ac
cu

ra
cy

 (
%

)

■ ReLU activations
■ Learned act., ReLU init.
■ Learned act., zero init.

Figure 17. Image datasets, results per number of layers.

Test vs. training accuracy Test accuracy vs. complexity
Classification Regression Classification Regression

MNIST

95 96 97 98 99 100
Training accuracy (%)

93.5

94

94.5

95

95.5

96

96.5

Te
st

 a
cc

ur
ac

y
(%

)

40 50 60 70 80
Training accuracy (%)

45

50

55

60

65

70

75

Te
st

 a
cc

ur
ac

y
(%

)

0 0.2 0.4 0.6
Complexity (TV)

94

95

96

97

Te
st

 a
cc

ur
ac

y
(%

)

0 0.02 0.04 0.06
Complexity (TV)

45

50

55

60

65

70

75

Te
st

 a
cc

ur
ac

y
(%

)

FASHION-MNIST

86 88 90 92 94 96
Training accuracy (%)

86.5

87

87.5

88

88.5

89

Te
st

 a
cc

ur
ac

y
(%

)

20 40 60 80 100
Training accuracy (%)

40

50

60

70

80

Te
st

 a
cc

ur
ac

y
(%

)

0 0.2 0.4 0.6 0.8
Complexity (TV)

85

85.5

86

86.5

87

87.5

Te
st

 a
cc

ur
ac

y
(%

)

0 0.05 0.1
Complexity (TV)

40

50

60

70

80

Te
st

 a
cc

ur
ac

y
(%

)

SVHN

78 80 82 84 86
Training accuracy (%)

77

78

79

80

81

82

83

Te
st

 a
cc

ur
ac

y
(%

)

20 30 40 50 60
Training accuracy (%)

25

30

35

40

45

50

55

Te
st

 a
cc

ur
ac

y
(%

)

0 0.5 1 1.5
Complexity (TV)

74

76

78

80

82

Te
st

 a
cc

ur
ac

y
(%

)

0 0.05 0.1 0.15 0.2
Complexity (TV)

20

30

40

50

Te
st

 a
cc

ur
ac

y
(%

)

CIFAR

50 55 60 65 70
Training accuracy (%)

47

48

49

50

51

Te
st

 a
cc

ur
ac

y
(%

)

10 20 30 40
Training accuracy (%)

12

14

16

18

20

22

Te
st

 a
cc

ur
ac

y
(%

)

0 0.05 0.1 0.15 0.2 0.25
Complexity (TV)

47

48

49

50
Te

st
 a

cc
ur

ac
y

(%
)

0 0.01 0.02 0.03 0.04
Complexity (TV)

12

14

16

18

20

22

Te
st

 a
cc

ur
ac

y
(%

)
Figure 18. Analysis of models trained on image datasets. Each marker represents a model with different hyperparameters or number of
training steps, and ReLUs (●) or learned activations with initialization as ReLUs (■) or as zeros (■). (Left) tr/test acc, models with learned
activations have better accuracy than ReLUs, especially those learned from a random initialization.

E.3. Transfer of Learned Activation Functions across Image Regression Datasets
We provide below additional results on the transfer of learned activations across datasets, using the image regression tasks
and 4-hidden layer MLPs. As in most experiments, we train a dataset-specific activation on each dataset (MNIST, FASHION-
MNIST, CIFAR, SVHN) then use each of them to train a different model on each dataset. This gives a 4×4 matrix of results
(middle rows in Table 4). We also attempt to learn an activation function on all datasets simultaneously (last row). See the
table caption of the observations.

Table 4. Transfer of learned activation functions across image regression datasets. The diagonal elements (gray cells) correspond to
activation functions optimized for a specific dataset then used to train a model on the same dataset. These obviously work well, but other
combinations also surpass the ReLU baseline, which indicates positive transfer across datasets. The one learned on all datasets (last row)
only improves over ReLUs on the two harder datasets (SVHN, CIFAR) and the improvements are (expectedly) smaller than with dataset-
specific solutions. Further work may be needed to better balance multiple tasks when learning an activation function for multiple datasets.

Accuracy (%) of models trained on Average ∆accuracy
Activation function MNIST FASHION-M. SVHN CIFAR compared to ReLU

ReLU 76.7 73.9 42.9 16.1 0.0
Learned on MNIST 79.7 73.0 41.0 18.2 +0.6 ± 2.3
Learned on FASHION-MNIST 64.3 75.1 39.7 23.7 −1.7 ± 8.4
Learned on SVHN 61.0 73.2 54.1 19.2 −0.5 ± 11.3
Learned on CIFAR 57.6 74.5 41.0 22.6 −3.5 ± 11.0
Learned on all datasets simultaneously 76.2 72.8 45.0 17.4 +0.4 ± 1.5

0 20 40 60 80
MNIST

0

20

40

60

80

Fa
sh
io
n-
M
N
IS
T

0 20 40 60 80
MNIST

0

20

40

60

80

SV
H
N

0 20 40 60 80
Fashion-MNIST

0

20

40

60

80

SV
H
N

0 20 40 60 80
MNIST

0

20

40

60

80

CI
FA
R

0 20 40 60 80
Fashion-MNIST

0

20

40

60

80

CI
FA
R

0 20 40 60
SVHN

0

20

40

60

CI
FA
R

Figure 19. Transfer across image regression datasets. Each marker represents an MLP architecture with 1 to 4 hidden layers, with
ReLUs (●) or activation functions learned on each of the four datasets (■). We plot the accuracy of each architecture on pairs of datasets to
show that improvements often correlate across datasets (the line represents the best linear fit to the ■).

E.4. Tabular Data

Implementation details
• Nearest-neighbor (k-NN). We use Matlab’s implementation fitcknn() with Bayesian hyperparameter optimization for

the number of neighbors and the distance measure (L1 or L2).

• Boosted trees. We use Matlab’s implementation fitcensemble() with Bayesian hyperparameter optimization of stan-
dard hyperparameters. All the tabular datasets that we use are binary classification tasks, and the classification trees
therefore produce discrete class predictions. To make the visualizations of “soft predictions” as in Figure 7c, we also
train regression trees with fitrensemble(), using the class labels in {0, 1} as regression targets. The output of these
regression trees is then more comparable to the outputs (logits) from the MLP models.

• Linear model. We implement this baseline with the same code as our MLP models but with no hidden layer.

• MLP models. Our models use 1 to 4 hidden layers, a width of 256, and they are trained with RMSprop [97] with large
mini-batches of 4096 examples to provide stable and consistent results. The number of layers is selected for the best
validation accuracy for each type of activation function. The learning rate is also selected for best validation accuracy, but
only once with ReLUs then reused for other activation functions.
The performance of our models would likely improve with additional hyperparameter tuning. The width alone has a large
impact on accuracy, as evaluated in Figures 8 and 21. Our goal is not best absolute performance so we did not expend
resources in hyperparameter tuning and focused on like-for-like comparisons (i.e. only changing the activation function).
If anything, our MLP models (and those with learned activation functions in particular) are at a disadvantage compared to
the baselines.

• The TanH activation functions with a prefactor follow Teney et al. [96]. They are simple TanH functions with a multi-
plier: tanh(αx). The scalar α ∈ [0.01, 8] is tuned for the best validation accuracy and shared across layers. The learning
rate λ, which is originally tuned on the ReLU model as mentioned above, is adjusted as λ←λ/α.

• Data normalization. For every tabular dataset, we normalize the data (shift and scale) such that every input dimension
(“column” in tabular terms) occupies the [−1, 1] range. We experimented with other options: a normalization to unit
standard deviation, and a quantile normalization to approximate a Gaussian or uniform distribution for every dimension.
However they produced disparate results across our 16 datasets, so we settled with the simplest option to keep things
consistent. If absolute performance is the objective, this should be optimized for each dataset. It has a large effect on the
accuracy of MLPs, but not of trees nor k-NN classifiers. So again, our models are likely at a disadvantage compared to the
baselines.

Details on the visualizations
• In Figure 7c, the grayscale images are produced by evaluating each model on 200×200= 40, 000 points in a 2D slice of

the input space defined as follows. We first select one training example x at random. We then select two input dimensions
m, n at random. We create every point of the slice by replacing the mth and nth values (the scalars x[m] and x[n]). of x
by every possible value in a grid of 200×200 values over [−1, 1] × [−1, 1]. Since our data is normalized such that every
dimension covers [−1, 1], we now have a slice of inputs in a realistic range. This also explains why the training examples,
marked by in Figure 7c are not centered in the images. They would be centered only if x[m]=x[n]=0.
The values plotted as a grayscale image are the network’s output before a softmax/sigmoid activation. These values are not
bounded to a specific range, so we scale them in each image to fill the black→ white range.

• In Figure 7a and b, the loss and complexity landscapes are produced by evaluating models over a 50×50 grid covering a
2D slice of the parameter space (weights and biases). The slices are chosen to align with the first two principal directions
of the trajectory. We obtain them by computing the PCA of a matrix made of the parameters from a number of checkpoints
recorded over the training of the model. The 50×50 sets of parameters are obtained by applying perturbations to the trained
model along these two directions. For each such set of parameters, we evaluate the model’s training loss and its complexity
(Section F) to make the loss and complexity landscapes. The range of loss/complexity values is consistent across all the
visualization of a given dataset (i.e. a given color represents the same level of complexity across all plots in Figure 7b for
example).

Intuition for the “input activation functions” (IAFs). The IAFs are activation functions that are applied directly on the
input data, before it is passed to a standard MLP. The key is that these IAFs are applied independently to each dimension,
such that they can implement a different behavior for each dimension (or “column” of the data). This is particularly useful
for tabular data because every dimension can represent a different type of information. In comparison, once the data is passed

through the first layer of an MLP, the dimensions are all mixed together, and the subsequent activation function(s) are applied
similarly to every dimension of the hidden representations.

The property of tabular datasets of requiring little or sparse feature interaction is well known and has been exploited in
prior architectures designed for tabular data, see e.g. Gorishniy et al. [32]. This property is also a likely reason why decision
trees are well suited to tabular data, since they implement decision boundaries aligned with dimensions of the data.
Additional results. See the figure below and their captions for details and observations. In Figures 22 and 23, each marker
represents a model with different hyperparameters, number of training steps, and ReLUs (●) or learned activations initilized
as ReLUs (■) or as zeros (■). The k-NN and tree models are represented as ◆ and ▲.

po
l

m
in

ib
oo

ne

ca
lif

or
ni

a

ho
us

e1
6h

m
ag

ict
ele

sc
op

e

co
ve

rt
yp

e

ba
nk

M
ar

ke
tin

g

ele
ct

ric
ity

cr
ed

it

ja
nn

is

he
lo

c

bi
or

es
po

ns
e

cr
ed

itC
ar

d

di
ab

et
es

13
0u

s

hi
gg

s

ey
eM

ov
em

en
ts

50

60

70

80

90

100

Ac
cu

ra
cy

 (
%

)

k-NN Trees Linear MLP ReLU TanH TanH, tuned prefactor Optimized AF Optimized IAF & linear Optimized IAF & ReLU Optimized IAF & AF

Figure 20. Comparison of model types on every tabular dataset [34], approximately sorted by decreasing performance. In almost all cases,
the ReLU baseline is surpassed by optimized activation functions (TanH with prefactor, learned AFs, and learned IAFs).

Linear 1 layer
72

74

76

78

Ac
cu

ra
cy

 (
%

)

Linear 1-4 layers

74

76

78

80

Ac
cu

ra
cy

 (
%

)

Linear 1-4 layers
60

65

70

75

80

85

Ac
cu

ra
cy

 (
%

)

Linear 1-4 layers
76

78

80

82

84
Ac

cu
ra

cy
 (

%
)

ReLU
Optimized from ReLU
Optimized from scratch

Average (all tabular datasets) ELECTRICITY COVERTYPE MAGICTELESCOPE

Figure 21. (Left) On the tabular datasets, the activation functions learned from scratch (initialized with zeros) are usually better than from
an initialization as ReLUs. But this varies across datasets and the opposite is sometimes true (right). Models with learned activation also
often perform best with fewer layers than with ReLUs, such as on the three datasets pictured.

CREDIT ELECTRICITY COVERTYPE POL HOUSE16H MAGICTELESCOPE BANKMARKETING MINIBOONE

60 70 80 90 100
Training accuracy (%)

60

65

70

75

80

Te
st

 a
cc

ur
ac

y
(%

)

75 80 85 90 95 100
Training accuracy (%)

72

74

76

78

80

82

84

Te
st

 a
cc

ur
ac

y
(%

)

80 85 90 95 100
Training accuracy (%)

78

80

82

84

86

Te
st

 a
cc

ur
ac

y
(%

)

99.9 99.92 99.94 99.96 99.98 100
Training accuracy (%)

92

94

96

98

100

Te
st

 a
cc

ur
ac

y
(%

)

80 85 90 95 100
Training accuracy (%)

80

82

84

86

88

90

Te
st

 a
cc

ur
ac

y
(%

)

80 85 90 95 100
Training accuracy (%)

76

78

80

82

84

86

Te
st

 a
cc

ur
ac

y
(%

)

70 80 90 100
Training accuracy (%)

70

72

74

76

78

80

82

Te
st

 a
cc

ur
ac

y
(%

)

85 90 95 100
Training accuracy (%)

86

88

90

92

94

Te
st

 a
cc

ur
ac

y
(%

)

HIGGS EYEMOVEMENTS DIABETES130US JANNIS DEFAULTOFCC BIORESPONSE CALIFORNIA HELOC

50 60 70 80 90 100
Training accuracy (%)

55

60

65

70

75

Te
st

 a
cc

ur
ac

y
(%

)

50 60 70 80 90 100
Training accuracy (%)

54

56

58

60

62

64

66

Te
st

 a
cc

ur
ac

y
(%

)

60 70 80 90 100
Training accuracy (%)

62

64

66

68

Te
st

 a
cc

ur
ac

y
(%

)

70 80 90 100
Training accuracy (%)

70

72

74

76

78

Te
st

 a
cc

ur
ac

y
(%

)

70 80 90 100
Training accuracy (%)

66

68

70

72

Te
st

 a
cc

ur
ac

y
(%

)

80 85 90 95 100
Training accuracy (%)

55

60

65

70

75

80

85

Te
st

 a
cc

ur
ac

y
(%

)

85 90 95 100
Training accuracy (%)

80

82

84

86

88

90

Te
st

 a
cc

ur
ac

y
(%

)

70 80 90 100
Training accuracy (%)

66

68

70

72

74

Te
st

 a
cc

ur
ac

y
(%

)

Figure 22. Training vs. test accuracy for all tabular datasets. The accuracy of ReLUs is generally surpassed by TanHs with the right
prefactor. The accuracy is almost always best with the learned IAFs. As expected, these better models also show a clearly higher complexity.
We also observe that the k-NN/trees/learned AFs models lie outside the pareto front of the ReLU models. In other words, they exhibit a
different relation between training and test accuracy, which indicates that they clearly posses different inductive biases.

CREDIT ELECTRICITY COVERTYPE POL HOUSE16H MAGICTELESCOPE BANKMARKETING MINIBOONE

0 20 40 60 80 100
Complexity (TV)

60

65

70

75

80

Te
st

 a
cc

ur
ac

y
(%

)

0 50 100 150
Complexity (TV)

72

74

76

78

80

82

84

Te
st

 a
cc

ur
ac

y
(%

)

0 20 40 60 80 100
Complexity (TV)

78

80

82

84

86

Te
st

 a
cc

ur
ac

y
(%

)

0 50 100 150
Complexity (TV)

92

94

96

98

100

Te
st

 a
cc

ur
ac

y
(%

)

0 20 40 60 80 100
Complexity (TV)

80

82

84

86

88

90

Te
st

 a
cc

ur
ac

y
(%

)

0 20 40 60 80 100
Complexity (TV)

76

78

80

82

84

86

Te
st

 a
cc

ur
ac

y
(%

)

0 50 100 150 200
Complexity (TV)

70

72

74

76

78

80

82

Te
st

 a
cc

ur
ac

y
(%

)

0 200 400 600 800
Complexity (TV)

86

88

90

92

94

Te
st

 a
cc

ur
ac

y
(%

)

HIGGS EYEMOVEMENTS DIABETES130US JANNIS DEFAULTOFCC BIORESPONSE CALIFORNIA HELOC

0 5 10 15
Complexity (TV)

55

60

65

70

75

Te
st

 a
cc

ur
ac

y
(%

)

0 10 20 30
Complexity (TV)

54

56

58

60

62

64

66

Te
st

 a
cc

ur
ac

y
(%

)

0 50 100
Complexity (TV)

63

64

65

66

67

68

Te
st

 a
cc

ur
ac

y
(%

)

0 1 2 3 4
Complexity (TV)

70

72

74

76

78

Te
st

 a
cc

ur
ac

y
(%

)

0 50 100
Complexity (TV)

66

68

70

72

Te
st

 a
cc

ur
ac

y
(%

)

0 1 2 3
Complexity (TV)

55

60

65

70

75

80

85

Te
st

 a
cc

ur
ac

y
(%

)

0 50 100 150 200
Complexity (TV)

80

82

84

86

88

90

Te
st

 a
cc

ur
ac

y
(%

)

0 10 20 30
Complexity (TV)

68

70

72

74

Te
st

 a
cc

ur
ac

y
(%

)

Figure 23. Test accuracy vs. complexity for all tabular datasets. As highlighted in Figure 6, the accuracy peaks at different complexity
levels across datasets. This explains why dataset-specific activation functions (and inductive biases) outperform the baselines.

← Activation function & loss landscape

← Complexity landscape

← Activation function & loss landscape

← Complexity landscape

← Activation function & loss landscape

← Complexity landscape

MLP, ReLU MLP, TanH w/ prefactor MLP, learned AF MLP, learned IAFs Boosted decision trees k-NN

Figure 24. Models trained on three tabular datasets: ELECTRICITY MAGICTELESCOPE, and COVERTYPE [34]. See Figure 7 in the main
paper for details on the meaning of these visualizations. The observations are similar across datasets.

E.5. Shortcut Learning

Data. The collages datasets are built using all 10 classes from the original datasets. This is a more difficult task that prior
work [85, 93] that only used 2 classes from each dataset. Our training set uses random combinations of training images from
the original dataset. Ditto for the validation and test sets. When no validation data is defined, we hold out a fraction of the
training set of the same size as the test set.
Architecture. Our models are 1-layer fully-connected MLPs of width 32, trained with large-batch SGD (4096 examples per
mini-batch) and a learning rate of 0.01. Only the activation function varies across experiments.
Spectral normalization. Our most successful experiments on shortcut learning use spectral normalization [30, 79] on all
layers when training and using the learned activation functions. The motivation comes from Teney et al. [96] who showed
that the magnitude of the weights in a layer, together with the choice of activation function, influences the level of “preferred
complexity” of the network. We therefore hypothesized that the level of “preferred complexity” of a learned activation would
be more stable (invariant to weight magnitudes) if these could be constrained in a narrow range. Spectral normalization is
one way to constrain the magnitude of the linear transformation. We compare in Figure 25 the same experiments performed
without and with spectral normalization. We see that the ability of the learned activations to steer the model is slightly better
with spectral normalization (clearer differences in the training trajectories).

0 20 40 60 80 100
MNIST Accuracy

0

10

20

30

40

50

CI
FA

R
Ac

cu
ra

cy Initialization (= random predictions)
ReLU Baseline
Activation optimized for MNIST
Activation optimized for CIFAR
Upper bound: ReLU trained on unambiguous MNIST
Upper bound: ReLU trained on unambiguous CIFAR

0 20 40 60 80 100
MNIST Accuracy

0

10

20

30

40

50

CI
FA

R
Ac

cu
ra

cy Initialization (= random predictions)
ReLU Baseline
Activation optimized for MNIST
Activation optimized for CIFAR
Upper bound: ReLU trained on unambiguous MNIST
Upper bound: ReLU trained on unambiguous CIFAR

Figure 25. Experiments on shortcut learning (MNIST/CIFAR collages) without (left) and with (right) spectral normalization. The training
trajectory with the activation optimized for CIFAR clearly differs from the baseline when using spectral normalization.

Additional results. We repeat our experiments with collages made from MNIST/SVHN. The training trajectories are not as
distinct as with MNIST/CIFAR, but the models do also achieve different top accuracies on the two datasets.

Ambiguous
training images

-17 0 +17

Optimized
for MNIST

-17 0 +17

Optimized
for SVHN

←
→

80 60 40 20 0 20 40 60
MNIST Accuracy (%) SVHN

Upper bound: ReLU trained on unambiguous SVHN
Activation optimized for SVHN

ReLU Baseline
Activation optimized for MNIST

Upper bound: ReLU trained on unambiguous MNIST

0 20 40 60 80 100
MNIST Accuracy

0

10

20

30

40

50

SV
H

N
 A

cc
ur

ac
y Initialization (= random predictions)

ReLU Baseline
Activation optimized for MNIST
Activation optimized for SVHN
Upper bound: ReLU trained on unambiguous MNIST
Upper bound: ReLU trained on unambiguous SVHN

Figure 26. Experiments on shortcut learning with MNIST/SVHN collages. Similar effects are obtained as with MNIST/CIFAR (Figure 9).

E.6. Algorithmic Tasks and Grokking

Data. We visualize in Figure 10 the target functions of the algorithmic tasks used to investigate grokking used in prior
work [73]. Each axis of the visualizations corresponds to one of the two discrete-valued operands. Grayscale values cor-
respond to the target function’s output, scaled to fit within the black→ white range. From the point of view of a network,
operands and output are represented as one-hot vectors. For example, for the task a+b mod 27, each operands can take 27
different values. Each is represented by a one-hot vector of length 27. The two are concatenated such that the input to the
network is a vector of size 2×27=54. The output of the network is a classification over the 27 possible values. For every
task, we generate all possible data (i.e. every combination of values of the two operands) and make random 80/20 training/test
splits.
Architecture. All networks in this section are 1-hidden layer MLPs of width 256, trained with an MSE loss and large-batch
(4096) gradient descent, no weight decay, learning rate of 1.0, for max. 6e4 training steps.

a+b

(mod 27)

a−b

(mod 27)

ab

(mod 27)

If b odd, ab
else a+b

a2 + b2

(mod 27)

a2 + ab + b2

(mod 27)

a2 + ab + b2

+a (mod 27)

a3 + ab

(mod 27)

a.b

in S4

a.b.a

in S4

a.b.a−1

in S4

(mod 53) (mod 53) (mod 53) (mod 53) (mod 53) (mod 53) (mod 53) (mod 53) in S5 in S5 in S5

Figure 27. Algorithmic tasks used to investigate grokking, also used by Power et al. [73]. Each task is defined as an operation over two
discrete-valued operands, passed to the model as one-hot encodings. We visualize the target function of each task by plotting its value
over all possible values of the operands (corresponding to the X/Y axes of each image). Sn is the group of permutations of n elements
(|S4|=24, |S5|=120).

1

2e
3

3e
30

100
ReLU

1
3e
2

3e
30

100
Learned activation function

1

2e
3

3e
30

100
ReLU

1
3e
2

3e
30

100
Learned activation function

1

3e
3

5e
30

100

1
4e
2

5e
30

100

1

2e
3

8e
30

100

1

2e
3

3e
30

100

1

7e
2

1e
30

100
1

1e
2

1e
30

100

1

5e
3

7e
30

100

1

1e
3

7e
30

100

1

4e
3

3e
40

100

1

4e
3

6e
30

100

1
9e
2

4e
40

100

1

4e
40

100

1

5e
3

7e
30

100

1
3e
2

7e
30

100

1
8e
1

3e
30

100

1

3e
30

100

1

4e
3

6e
30

100

1

2e
3

6e
30

100

1

1e
4

2e
40

100

1
5e
2

2e
40

100

1

9e
3

1e
40

100

1
5e
2

1e
40

100

1

9e
3

1e
40

100

1
9e
2

1e
40

100

1

6e
40

100
1

2e
3

6e
40

100

1

6e
3

9e
30

100

1
3e
2

9e
30

100

1

3e
4

4e
40

100

1

2e
4

4e
40

100

1

6e
40

100

1

8e
3

6e
40

100

1

7e
2

1e
30

100

1
8e
1

1e
30

100

1
8e
1

6e
40

100

1

6e
40

100

1

6e
3

9e
30

100

1
4e
2

9e
30

100

1

6e
3

1e
40

100

1
5e
2

1e
40

100

Figure 28. Training curves for all tasks from Figure 27 (same order, left-to-right then top-to-bottom). For each task, we show the accuracy
across training iterations (■ training accuracy, ■ test accuracy) for models with ReLUs and learned activations, and the learned activation
function itself over [−1, 1]. In almost all cases, the learned activation functions converge faster and/or to a higher test accuracy than ReLUs.

F. Measure of Complexity based on Total Variation

Validation against Fourier complexity. To validate the proposed measure of complexity based on total variation (TV), we
compare it against a Fourier-based measure from prior work [96]. We plot the two for a large number of models in Figure 29.
They are very closely correlated. The TV is discriminative for both small and large values, its evaluation is numerically more
stable, and it is more straightforward to implement. We made similar observations with other models and other datasets.

2 2.5 3 3.5
Complexity (Fourier)

0

10

20

30

40

50

Co
m

pl
ex

ity
 (

TV
)

Figure 29. Comparison of the measure of complexity based on total variation (TV) vs. a Fourier-based measure of complexity from prior
work [96]. We plot the values for a large number of models trained on the ELECTRICITY tabular dataset [34]. The models use a TanH
activation with a prefactor ranging from 0.1 to 8. The shade of the markers corresponds to the value of the prefactor (darker ≈ smaller).

Implementation. The TV complexity involves a few implementation choices. Most are not critical as long as they are
consistent across values being compared. We provide precise hyperparameter values that we used but they are easy to tune.
One can simply evaluate the TV of some models multiple times (with different random seeds for the choice of paths) and
verify that the variance is small.
• Number of linear paths: 200. This simply needs to be high enough to probe the function along many dimensions.
• Number of points on each path: 100. This simply need to be high enough to capture the resolution of the variations in the

function (see Figure 30).
• The two points defining each path are chosen as two points from the training set with different labels. One can also include

points with the same label, but the path between them often is a constant line that does not bring any information.
• We account for the fact that the function may not perfectly fit the ground truth values by first subtracting, from the evaluated

path (blue line in Figure 30), the straight path connecting the predicted values at the two end points. What we measure is
therefore the deviation from a piecewise linear model. Therefore, by design, the TV complexity of a linear model is 0.

• Conceptually, it could make sense to normalize the TV of every path by the distance between its end points, because
more variations could be expected along a longer path. In practice however, this would make no difference as long as the
complexity values being compared are measured on the same set of paths/end points, or even just many paths from the
same distribution of end points (i.e. the same dataset).

Figure 30. Examples of 1D paths (along the X axis) used to compute the TV complexity. The Y axis represents the model output. These
examples correspond to a model trained on a tabular classification dataset with ground truth labels in {0, 1}. The blue dots (•) represent
the paths’ end points, which are training examples picked at random, and their ground truth values. The blue lines (■) represent the output
of the model (capped to [0, 1] for visualization). Note that this model does not perfectly interpolate the training points, i.e. the line does not
always pass through the blue points. Dashed lines in the background represent the distance to the closest point in the dataset, for debugging
purposes.

