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6. More Details
6.1. More Experimental Details
In our FingerInv, we consistently used two default sched-

ulers from the official code for PS-DDPMs and LDMs, re-

spectively, to control variables and demonstrate the distinc-

tiveness of our crossing route. Specifically, the official de-

fault scheduler settings for PS-DDPMs are identical, and

for various LDMs, the default scheduler configuration from

the official SD code is uniformly applied. To save time, all

models used a total of T = 20 timesteps. To generate ran-

dom strings for QR code creation, we used ChatGPT7 and

created QR codes through an online platform.8 We used a

Redmi K60 Pro smartphone to scan QR codes.

In Section 4.3, we explored the impact of different at-

tacks on model performance in the main paper for robust-

ness analysis. We fixed the same random seed to perform

100 samples on both the original model and the models

subjected to attacks. This setting for FID calculation may

not be conventional; due to our current inaccessibility of

the LSUN server, we were unable to use samples from the

training set. Moreover, in our context, we primarily aimed

to assess distribution changes, and we believe that using

a slightly reduced sample size—combined with sampling

based on the original model as the target distribution—can

still yield relevant insights.

6.2. Determination of Thresholds
In Section 4.2, we conduct a quantitative analysis of the

uniqueness in the latent space. A threshold is determined

for the squared l2 distance between the owner fingerprint z
and a suspicious fingerprint z′, calculated following similar

principles as in [24, 25]. We perform a hypothesis test based

on the squared l2 norm of their difference Δz = z − z′, as-
suming that z and z′ are nearly standard Gaussian samples

due to the nature of DDPM. Each element ofΔz follows the

distribution N (0, 2), so the variable Z =
‖Δz‖22
2 follows a

scaled chi-squared distribution χ2ν . To safely reject the null

hypothesis that z and z′ are similar by applying the p-value

approach with p < 0.05, we can find a threshold τ such that

P [Z ≤ τ ] < 0.05, or equivalently, find thresholγ such that

P [‖z − z′‖22 ≤ γ] < 0.05.
In our experiments, different degrees of freedom ν are

applicable for PS-DDPMs and LDMs (21× 3× 256× 256
and 21×4×64×64, respectively). As a result, we calculate

two separate thresholds: γps = 8.27 × 106 for PS-DDPMs

and γldm = 6.91× 105 for LDMs.

7https://chatgpt.com/
8https://cli.im/

7. Ablation Studies
7.1. For Fingerprint Extraction
Based on the fingerprint extraction process in Section 3.2,

we conducted ablation experiments in three ways: first,

using only our initialization noise samples; second, using

DDPM inversion samples as initialization and optimizing

it through our Lcritical; and third by altering our loss func-

tion Lcritical to −Lcritical, similar to [25], which is denoted

as MaxObj, acting as a nearly adversarial loss function. As

shown in Figure 11, it is evident that using both our pro-

posed initialization and Lcritical achieve significantly better

distinctiveness.

Notably, compared with baseline methods in Figure 6

in the main paper and thresholds γps = 8.27 × 106 and

γldm = 6.91×105, utilizing either our noise initialization or

optimization independently achieves considerable distinc-

tiveness. For example, for DDPM inversion, applying our

optimization increases the latent code distances by a factor

of at least six. On the other hand, MaxObj does not en-

hance distinctiveness and performs worse than initialization

alone. This aligns with the findings of [25], suggesting that

MaxObj may not guide samples as close to or across the

performance border-zone as our optimized methods do.

7.2. For Verification Images
In Section 3.2, we discussed the benefits of using QR code

images for verification, and noted that they may serve as

outliers for most generative models, potentially enhancing

distinctiveness. However, we aim for our fingerprinting

method’s distinctiveness to rely on the definition and op-

timization of noise at each time step, forming a crossing

route at the performance border-zone, rather than solely us-

ing specific outliers as x0. This is because QR code images

may not be outliers for all generative models. Therefore, we

tested our method’s distinctiveness using in-domain images

as verification images.

In Figure 1 of the main paper, we use a natural veri-

fication image different from the QR code images in PS-

DDPMs. Nevertheless, the training datasets of these four

models are distributed differently, so we conducted exper-

iments using three LDMs based on the LAION dataset to

better illustrate the distinctiveness of our method. Specif-

ically, we randomly sampled several images directly from

the LAION-art dataset, and the results are shown in Fig-

ure 12. Even when using in-domain images as verification

images and employing the three models within a similar

generation domain, our method still exhibits strong distinc-

tiveness.



Figure 11. Results of our ablation studies. It is evident that employing both our proposed initialization and optimization methods results in

significantly enhanced distinctiveness.
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Figure 12. Our discriminative results for in-domain verification

images.

8. Other Baseline Methods

In addition to the baseline methods discussed in the main

paper, we experimented with additional methods, such as

DDIM inversion and methods based on fingerprint restora-

tion models (FRM) as described in [25]. However, their

reconstruction and discriminative results indicate that these

methods are not directly suited for DDPMs.

DDIM inversion. An intuitive baseline method involves

the use of methods for deterministic diffusion models, like

DDIM inversion, to estimate xT as the latent code. How-

ever, this approach suffers from error accumulation due to

linearization assumptions, making reconstruction challeng-

ing. As shown in Figure 13, using DDIM inversion with

LDMs results in failed x0 reconstructions. Additionally,

the results also indicate that DDIM inversion may lead to

misjudgment.

Fingerprinting restoration models [25]. Another

baseline involves adapting the FRM approach as outlined

in [25]. Original [25] requiring white-box access to directly

optimize the clean image x, we adapted it to optimize noise

given a QR code image x in a black-box setting. However,

the results underperformed. Figure 13 illustrates that, when

applied in a black-box setting, FRM introduces consider-

able confusion and significant risk of misjudgment-all mod-

els produced the similar scannable QR code images.

9. More Results for Uniqueness Analysis
9.1. ScanResults forQR Images of Varying Lengths
In Section 4.2 of our main paper, we used QR code images

with a string length of lqr = 32 as a case study for scan-

ning verification. Here, we present results for other lqr. As

shown in Table 3, the confusion matrices have �on the di-

agonal and�elsewhere. These results exhibit the same dis-

tinctiveness across different lengths, perfectly distinguish-

ing between models, which are consistent with Figure 8 in

the main paper.

9.2. Details for Discriminating Highly Similar
Score-based Generative Denoisers

Algorithm. As mentioned in Section 4.2, according

to [12], we obtained two highly similar score-based gen-

erative denoisers and implemented their FingerInv process

based on their sampling methods. The purpose of training

these denoisers is to remove blind Gaussian noise directly,

unlike DDPMs which use a complex scheduler to iteratively

map the distribution between pure noise images and target
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Figure 13. Results of other baseline methods. The upper row dis-

plays DDIM inversion outcomes, whereas the lower row shows

the results for FRM. Ideally, effective confusion matrices should

illustrate scannable QR codes only along the diagonal, thereby

suggesting that these two baseline methods lack distinctiveness in

differentiating between models.

Table 3. Our discriminative results for different string lengths

of QR code images, which perfectly distinguish different models

(only the diagonals are �).

PS-DDPMs LDMs

Bedroom Cat CelebA Church SD Pixart Deci

String length = 24

Bedroom � � � � SD � � �

Cat � � � � Pixart � � �

CelebA � � � � Deci � � �
Church � � � � - - - -

String length = 32

Bedroom � � � � SD � � �

Cat � � � � Pixart � � �

CelebA � � � � Deci � � �
Church � � � � - - - -

String length = 64

Bedroom � � � � SD � � �

Cat � � � � Pixart � � �

CelebA � � � � Deci � � �
Church � � � � - - - -

images. So we simply iteratively add noises on the crossing

route of the denoiser and adapt our fingerprinting method

to these denoisers primarily based on their sampling pro-

cess [12], which involves sampling via ascent of the log-

likelihood gradient from a denoiser residual. Our algorithm

is presented in Algorithm 2. Specifically, we set a maxi-

mum time step T . Given a target verification image x0, we

incrementally add noise to x0 following our crossing route

until reaching the noisy image xT , then reverse to derive

the latent components. We use a larger δ1 during initial-

ization. The process is simple yet effective, as confirmed

by experimental results showing good distinctiveness. In

the verification phase, we obtain the output image based on

the original sampling algorithm from [12] with fixed latent

noises, timesteps, and other parameters. Note that to main-

tain consistency with previous DDPMs, we label xT as the

noisy image and x0 as the clean image, reversing the ap-

proach in [12]. Specifically, we follow the most of the orig-

inal parameter settings as [12] and set h = 0.01, β = 0.1,
T = 50, N = 10, δ1 = 105 and δ2 = 1 ,and λ = 0.1.

Algorithm 2 Fingerprint inversion for a score-based gener-

ative denoiser

Require: denoiser f that estimates the clean image, step

size h, stochasticity from injected noise β, target verifi-

cation image x0, total timesteps T, hardness parameters

δ1 and δ2, optimization steps N , learning rate λ
1: for t = 1 to T do 	 Obtain {x1, . . . , xT }
2: no ∼ U(−1, 1), ng ∼ N (0, 1)
3: ε̃t = ng + δ1

t−1
T no

4: for i = 1 to N do
5: xt ← x0 + ε̃t
6: L = T−t

T ‖f(xt)− x0‖22 − δ2
t−1
T ‖∇xt‖1

7: ε̃t = ε̃t − λ∇ε̃tL
8: end for
9: xt ← x0 + ε̃t

10: end for
11: for t = T to 1 do 	 Obtain {zT , . . . , z1}
12: st ← f(xt)− xt 	 Compute the score from the

denoiser residual

13: σ2t ← ‖st‖2/d 	 Compute the current noise level

14: γ2t ← ((1− βh)2 − (1− h)2)σ2t
15: zt ← (xt−1 − xt − hdt)/γt 	 Compute zt
16: end for
17: return latent code z = {xT , zT , . . . , z1}

More results. In Section 4.2 of the main paper, consid-

ering that the resolution of these two models is only 80×80,
we used QR code images with a string length of 16. Here,

we extend the lengths to 24, 32, and 64, and present the

results in Figure 14. The results indicate that even with

QR code images that are complex relative to the 80 × 80
resolution, our method successfully distinguishes different

models. This further demonstrates that our method is ef-

fective even for complex verification images, showcasing

strong fingerprinting capability.
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Figure 14. More results for two highly similar score based gener-

ative denoisers.

9.3. Results for More Diffusion Models

The focus of this paper is on fingerprinting DDPMs for their

wide adoption. We extend to other models, e.g. representa-

tive SGMs [12], with nearly identical score functions. Here,

we again extend to more diffusion models, including flow-

matching SOTA ones [14]. We added uniqueness results for

these diffusion models, including SD2-1, Deci2, SD3-5 and

Flux.1-dev, with training reportedly independent of earlier

versions. We simply treat their models as denoisers and use

the spirit of FingerInv to get their fingerprints, and then re-

sized the resolution of their fingerprint latent codes for com-

parison. As demonstrated in Fig. 15, the cross-validation

results still show distinguishability.

10. More Results for Robustness Analysis

10.1. Different String Lengths of QR images

In Section 4.3 of the main paper, due to space limitations,

we conducted robustness analysis experiments using QR
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Figure 15. Unique results for more diffusion models.

code images with a string length of 32. Here, we present

results for string lengths of 24 and 64. As shown in Table 4

and Figures 16 and 17, our method demonstrates similar

robustness and strong resistance to various attacks for dif-

ferent string lengths of QR images.

10.2. Impacts of Attacks
In Section 4.3 of our experiments, we employed attack

methods such as pruning, fine-tuning, and quantization, and

detailed their significant impact on model performance in

the main paper. Here, we provide additional results illustrat-

ing the effects of these attacks on the generation outcomes.

Figures 18 and 19 show that these attacks clearly influence

both unconditional and conditional generation.

It is evident that pruning attacks have a significant im-

pact. Quantization with bfloat16 precision affects PS-

DDPMs more significantly than float16 quantization, which

has a smaller impact. For fine-tuning attacks, the LAION-

art dataset was used to fine-tune PS-DDPMs, and pre-

trained fine-tuned models for SD were sourced online. Al-

though the quality of some images generated through fine-

tuning attacks may not degrade, their distribution changes.

Our fingerprinting method effectively counters these at-

tacks, demonstrating significant robustness.
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Figure 16. Visual results of robustness analysis using the QR code verification image with string length 24.
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Figure 17. Visual results of robustness analysis using the QR code verification image with string length 64.
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Figure 18. Visual effects of various attacks on unconditional generation.
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Figure 19. Visual effects of various attacks on conditional generation. The bottom row shows the prompts used for generating the images.



Table 4. Robustness results for verifying QR images with different

string lengths lqr of our method. We successfully detected finger-

print information in all attack scenarios.

Eval Length=24 Length=32 Length=64

P
ru

n
in

g

Bedroom � � �
Cat � � �

CelebA � � �
Church � � �
SD V1-4 � � �

Deci � � �
Pixart � � �

F
in

et
u
n
in

g

Bedroom � � �
Cat � � �

CelebA � � �
Church � � �
SD V1-5 � � �
Delibrate � � �
Realistic � � �
Anything � � �

Q
u
an

ti
za

ti
o
n

Bedroom � � �
Cat � � �

CelebA � � �
Church � � �
SD V1-4 � � �

Deci � � �
Pixart � � �

Success Rate 100.00% 100.00% 100.00%


