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Supplementary Material

A. Convergence of stochastic algorithm

We now formalize the convergence result stated in Sec-
tion 4.2 for algorithm (15). Our analysis relies on two key
assumptions. First, we require unbiased gradient estimators
with variance growth condition:

Assumption A.1. For all k, gk in (15) is an unbiased es-
timator of 1
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. More precisely, assuming that the se-
quence (xk)k2N is adapted to the filtration {Fk}k�0, we
assume that EAk,ek
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fined as in Proposition 3.2. Furthermore, we assume that
there exists constants A,B � 0 such that
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holds almost surely for all k 2 N.

Second, we require a standard assumption on the step sizes:

Assumption A.2. The stepsize (�k)k2N satisfiesP1
k=0 �k = 1 and
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< 1.

Under those assumptions, the proposed algorithm rewrites
as a proximal stochastic gradient algorithm, and we can de-
rive the following result.

Proposition A.3. Assume that Assumptions A.1 and A.2
hold, and define the residual function
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Then we have that E[F (xk)] �!
k!1

0.

Proof. First, we have that in our setting, f is convex. More-
over, we have that d2

C
is bounded from below, and from

Proposition 3.2, we have that rd
2
C

is Lipschitz. The result
then follows from [19, Theorem Corollary 3.6].

B. Prior loss

To investigate the underlying prior associated with the dif-
ferent models, we investigate the quantity d(y) = ky �
R(Hy + w)k where y are images with various levels of
degradation. More precisely, we set y = �blur ⇤ x+ �noisen

where n ⇠ N (0, Id); thus, as �noise ! 0 and �blur ! 0, y
tends to a natural image. We plot values of d obtained for
different models R in Figure 7. We observe that the lowest
values of d(y) are obtained for noiseless, smooth images,
suggesting that the proposed priors tends to show a smooth-
ing property and promotes image regularity.

Figure 7. Average distance ky �R(H(y))k2 for different models
and different degradations for y. More precisely, y is a blurred and
noisy version of x defined as y = �blur ⇤ x+ �noisen.

C. Finetuning of restoration priors

In this section, we summarize the implementation details
for the finetuned models used in our experiments. We con-
sider 3 finetuned models: two versions of the Restormer
model for image deblurring (Gaussian and motion), and
random mask inpainting. All finetunings are performed on
the training dataset from [39].
C.1. Deblurring models

The Restormer model from [37] is trained on real blur im-
ages with blur kernels difficult to simulate. In turn, com-
puting the degradation set D associated to the model is not
straightforward. Instead, we propose to finetune the model
in two easily simulated setups.
Restormer Gaussian: Finetuned on Gaussian and diffrac-
tion blur removal with kernel size sampled uniformly at
random �blur 2 [0.001, 4] and additive Gaussian noise
with standard deviation sampled uniformly at random � 2
[0.001, 0.1]. We train on randomly cropped image patches
of sizes 2562 with batch size 8. Optimization is performed
on L1 loss and uses Adam optimizer with default PyTorch
parameters and learning rate 1e-4 for 90k steps.
Restormer Motion: Finetuned on motion blur removal
from [30] with trajectory length scale 0.6, Gaussian Process
standard deviation 1.0, and additive Gaussian noise sam-
pled uniformly at random � 2 [0.001, 0.1]. Other training
parameters are the same as above.

C.2. Inpainting models

The LAMA model [29] is trained on large blur kernels and
performs well on large inpainting masks, but we observed
suboptimal performance on binary random masks.
LAMA random inpainting: Finetuned for random in-
painting with mask probability sampled uniformly at ran-
dom p 2 [0.1, 0.9] (no noise is added during training). Only
the last 4 convolutional layers are updated during training.
We train on randomly cropped image patches of sizes 1282

with batch size 64. Optimization is performed on L1 loss
uses Adam optimizer with learning rate 1e-4 for 300k steps.



Observed DRP [10] DPIR [39] DiffPIR [41] Proposed Groundtruth

Figure 8. Gaussian deblurring on Imnet100, � = 0.01.

Observed DRP [10] DPIR [39] DiffPIR [41] Proposed Groundtruth

Figure 9. SRx4 on Imnet100, � = 0.01.



D. Additional visual results

We provide further reconstruction results on the Gaussian
deblurring problem in Figure 8 and on the SRx4 problem in
Figure 9.

E. Influence of the degradation

The choice of degradation operator significantly impacts re-
construction quality. In Fig. 10, we give reconstruction met-
rics for varying degradation strengths using either a Gaus-
sian Restormer prior and a DRUNet denoising prior. This
shows that a minimum degradation is required to stabi-
lize the reconstruction, while increasing beyond a certain
threshold leads to excessive smoothing.

Figure 10. Influence of the degradation operator on the FiRe
restoration algorithm on the Set3C algorithm for different prob-
lems. Left plot: FiRe with Restormer Gaussian prior. We run the
algorithm with different kernel widths. Reconstructions (details)
corresponding to points (b), (c), (d) on the plot are shown on the
left. Right plot: same, but with a DRUNet denoiser restoration
prior; (f), (g) and (h) panels show the associated reconstructions.
(a) and (e) show the degraded measurements y.
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