
Poly-Autoregressive Prediction for Modeling Interactions

Appendix

9. Related Work: Case Studies
Action recognition/forecasting. Recent advancements in
action recognition have significantly improved our ability
to understand and classify human activities in videos, start-
ing with the SlowFast network [16], which introduced a
two-pathway approach that processes visual information at
different frame rates to capture slow and fast motion patterns.
This resembles ventral and dorsal pathways of human brain
for action understanding and object recognition, respectively.
Following the rise of vision transformers [14], MViT [15]
showed promising results on action understanding bench-
marks with multi-scale transformers. Recently, Hiera [42],
presented a hierarchical vision transformer that leverages
multi-scale feature learning to enhance action recognition
performance, by utlizing masked image pretraining as in
MAE [21]. LART [40], expanded on these prior works by
incorporating 3D human pose trajectories to achieve better
action prediction performance. Some works forecast and
anticipate actions [24]. [48] perform action forecasting on
videos using relational information. [29] train an RNN on
long-form videos to contextualize the long past and improve
predictions of the future.

Car trajectory prediction. In the autonomous driving lit-
erature, forecasting the future motion of cars is a popular
problem [11, 22], facilitated by an influx of datasets in recent
years [5, 7, 49]. Many important approaches have focused
on modeling the environment in conjunction with multiple
agents [6, 12, 43]; our framework only focuses on multi-
agent interactions. More recent advancements have seen
the rise of transformer-based methods in trajectory predic-
tion [35, 61]. In particular, MotionLM [44] forecasts multi-
agent trajectories by encoding motion in discrete acceleration
tokens and passing these tokens through a transformer de-
coder that cross-attends to the Wayformer [31] scene encoder.
When applying the PAR framework to trajectory prediction,
we use acceleration tokens to discretize car motion.

6D pose estimation and hand-object interaction. 6D pose
estimation from monocular camera images has been exten-
sively studied [26, 52, 55, 60]. Additionally, a related area
of research known as 6D object pose tracking leverages tem-
poral cues to improve the accuracy of 6D pose estimation
in video sequences [13, 56–58]. There is also significant
interest in learning state and action information of hands and
objects through hand-object interaction data, sourced from
both curated and in-the-wild video data [59]. Of particular
relevance to 6D pose estimation is the DexYCB dataset [8],
which contains 1000 videos of human subjects interacting

with 20 objects on a table with randomized tabletop ar-
rangements and 6D object poses. For the third case study in
this paper, we propose using the PAR framework to model
hand-object interactions, demonstrating that incorporating
the hand as an agent provides a useful prior for enhancing
object rotation and translation predictions compared to AR
modeling.

10. Additional PAR Framework Details
10.1. Implementation details

Token embeddings and loss. For discrete tokens, we use a
standard learned embedding layer to convert the tokens to
the hidden dimension dh of the model. To compute the loss,
we use a classification loss between the predicted distribu-
tion (output logits) and the input ground truth tokens. For
continuous inputs with dimension d, we learn a linear layer
to project from d to dh, and a second un-projection layer to
project from dh back to d. To compute the loss, we take the
last hidden state of the model, un-project it back to d, and
then compute a regression loss in the original token space.

Next-timestep prediction. In standard autoregressive mod-
els (such as our single-agent model in section 3.2) the next
token prediction objective is enforced by computing the loss
on an input and predicted target that are both shifted by one.
Now, we will instead shift both by N , so that for a given to-
ken, the model operating on our flattened sequence of N ⇤ T
tokens predicts a token corresponding to the next timestep
but the same agent.

Inference. For a single-agent model, starting with an initial
sequence history of h tokens, we feed these into the model to
get the next token, which we then append to our sequence to
form a new sequence of h+1 tokens. We repeat this process
to generate arbitrarily long sequences.

For our multi-agent model, we start with a ground-truth
history of h timesteps, which corresponds to h ⇤N tokens,
including the ego agent, agent N . Inputting this to the model
results in the last output token being our ego agent at timestep
h+1. Then, to predict the next timestep h+2, we concatenate
to the ground truth h ⇤N tokens the ground truth of agents
1 : N � 1 at timestep h + 1 and our prediction of the ego
agent at timestep h+ 1, and we repeat this process.

For a multiagent next-token prediction ablation, to predict
the ego agent at timestep h+ 1, we feed in the ground truth
of agents 1 : N � 1 at h + 1 to our model to predict our
ego agent, agent N , at timestep h + 1. We continue this
process of giving our model the ground truth tokens of agents
1 : N � 1 to predict agent N at each timestep. This means

1

Transformer Predictor

ta0 tb0 tc0 ta1 tb1 tc1 ta2

�ta1 �tb1 �tc1 �ta2 �tb2 �tc2 �ta3

loss = �(ta1 , �ta1) + �(tb1 , �tb1) + �(tc1, �tc1) + �(ta2 , �ta2) +

⨁ ⨁ ⨁

Tokens

Token
Embeddings

Predicted Tokens

Raw Transformer
Outputs

⨁ ⨁ ⨁ ⨁

index: 43052

Agent ID Token

11

Location x,y

Token embeddingAgent ID embeddingSine-Cosine PE

embedded location

embedded agent ID

embedded token

⨁

⨁

Add that loss is on
distribution

Transformer Predictor

Index: 54

Predicted distribution

y embedx embed

argmax

-0.64 | 0.14 | 0.941

Agent ID Token

Token embedding
Agent ID embedding

embedded agent ID

embedded token
⨁

Transformer Predictor

Token unprojection

prediction

-0.67 | 0.13 | 0.97

Figure 9. Architecture Top: PAR training with teacher forcing. Here, we see that the tokens are input to the model and projected to a token
embedding dimension of size dh = 128, where embeddings such as the agent ID embedding can be summed. Then, the transformer output
is sampled (discrete tokens; left) or deprojected (continous tokens; right) to produce a predicted token. At inference, the same embeddings
are summed and the same conversion from transformer output to token space occurs. Bottom left: PAR on discrete tokens. In this case, the
token in question is an integer index into a codebook and the standard transformer emebedding layer is used to project to dh. Here we show
the agent ID embedding and our Location Positional Encoding summed to the embedded token. After being passed to the transformer, the
output is a distribution of logits, from which a token can be sampled—we use argmax in our experiments. In the discrete case, the token is
converted back to the actual modality via a detokenizing step. Bottom right: PAR on continuous tokens. Here, the token is projected to dh
using a learned projection layer. The output from the transformer is of size dh, and we have a trained deprojection layer to project back from
dh to the token dimension. We do not add any operations after the deprojection to constrain predicted token values.

that this ablation necessarily has more information available
at inference time.

10.2. Architecture Details
A detailed diagram of our architecture can be seen in Fig. 9,
where we show the overall PAR method during training with

teacher forcing, and in-depth details of how discrete and
continuous tokens are processed.

2

A
R

2-
ag

en
t P

A
R

Figure 10. Qualitative examples of action prediction on single-
person actions. While dance, ride and sit are not multi-person
actions, our method is able to predict them more accurately in
these examples (and overall by margins of +2.0, +1.0 and +2.7
mAP points respectively, see Fig. 11). This is likely because these
actions are co-occuring between two agents who are both partaking
in the activity in question, and our 2-agent PAR model is able to
reason over this. Note that in the horse-riding example, the second
agent is present in the history, but the tracking failed and they are
not present at the timesteps we are predicting (see full history and
predictions in supplementary video). This context in the history is
sufficient to help our PAR model make better predictions.

11. Additional Experimental Results
11.1. Additional Results on AVA Action Forecasting
We see the results of our 1-agent AR and 2-agent PAR meth-
ods on the AVA 1-person classes in Fig. 11. On the vast
majority of these classes, our 2-agent PAR method is still
stronger than 1-agent AR. This is likely because there are
many actions that people carry out together, whether it be 2
people both dancing (+2.0), walking together (+11.3), watch-

ing TV (+1.7), or listening to music (+5.4). We show a quali-
tative example of some of these single-agent action classes
in Fig. 10, where we see that the PAR approach helps the
model make better predictions.

Evaluation dataset The AVA test set annotations are not
released. Since we are focused on action forecasting from
ground-truth past annotations instead of predicting actions
from video frames, we evaluate on the validation set.

11.2. Additional Results on Object Pose Estimation
See Figures 12 and 13 for more qualitative results on rotation
and translation predictions, respectively.

Additionally, we perform an ablation on the effect of the
agent ID embedding on the performance of our system for
the hand-object interaction. The results are presented on the
test split of the dataset, using the best checkpoint selected

Type Method Ag-ID embd MSE (m2) # GEO (rad) #
Transl 1-ag AR N/A 3.68 ⇥10�3 -
Transl 2-ag PAR 7 2.26 ⇥10�3 -
Transl 2-ag PAR 3 2.17 ⇥10�3 -
Rot 1-ag AR N/A - 0.919
Rot 2-ag PAR 7 - 0.895
Rot 2-ag PAR 3 - 0.837

Table 7. Object pose estimation PAR ablation. All results are
on the test split of the dataset. We see that for the case of object
pose forecasting, using the agent ID embedding helps improve the
performance on both translation and rotation prediction.

Method Timestep pred Ag-ID embd ADE FDE "
1-ag AR N/A N/A 1.44 3.57
3-ag AR 7 7 1.36 3.37
3-ag PAR* 7 3 1.36 3.37
3-ag PAR* 3 7 1.36 3.35
3-ag PAR 3 3 1.35 3.34

Table 8. Car trajectory prediction PAR ablation. All results
use acceleration tokens, and the 3-agent methods use the location
positional encoding.

based on performance on the validation split after 500 epochs
of training (to convergence) with agent ID embeddings. As
seen in Table 7, removing the agent ID embedding for the
2-agent PAR has a more significant effect on the rotation
estimation than the translation estimation. This may be at-
tributed to the fact that in the translation estimation, both
the hand and the object tokens are represented as 3D trans-
lations, but in the case of the rotation estimation, the hand
token is represented as a 3D translation, while the object
token is represented as a quaternion. Thus, having the agent
ID embedding is helpful for tokens that measure different
types of quantities.

Please note that we do not include an ablation on the
next timestep prediction, because that would entail inputting
the hand token and predicting the object token. Shifting
by 1 instead of by 2 (our number of agents – see Figure 3
and Section 10.1) would entail computing a loss on tokens
of different dimensions which is not possible. The next-
timestep prediction component of the PAR framework is
necessary for a task such as this one with multiple data
modalities.

11.3. Additional Results on Car Trajectory Predic-
tion

We conduct an ablation on our the agent ID embedding
and next timestep prediction for the 3-agent PAR model in
table 8. We see that in our cars case study, our 3-agent PAR
model slightly outperforms the 3-agent models without the

3

Figure 11. Per-class mAP on AVA single-person actions. On these actions, our PAR method is still stronger for the majority of action
classes as compared to single-agent AR. For instance, we get an absolute 11.3 mAP gain on walking - people often walk in groups, so it
makes sense that this action would benefit from our PAR method.

LPE Method ADE # FDE #
7 3-agent PAR 1.40 3.44
7 10-agent PAR 1.39 3.43
3 3-agent PAR 1.35 3.34
3 10-agent PAR 1.35 3.35

Table 9. Car trajectory prediction with 3 vs 10 agents. All results
use acceleration tokens.

next timestep prediction and agent ID embedding. Note that
not using next timestep prediction actually results in the
model having more information at inference time (see the
last paragraph of Sec. 10.1), so this combined with nuScenes
being a relatively simple dataset, and the small acceleration-
based motion token vocabulary could explain why the results
are comparable.

11.4. Results with more than Three Agents
We experiment with using 10-agent PAR instead of 3-agent
PAR for car trajectory prediction on nuScenes, Table 9. We
see that our model has similar performance across both num-
bers of agents. While PAR using our small model can still
learn and reason through the increased complexity of 10
agents, the increased agents do not help. We hypothesize
that for cars driving on the road, there are two most influ-
ential agents: the car directly in front and the one in the

adjacent lane, especially during lane changes. Therefore,
we hypothesize that beyond two neighboring agents, other
agents add limited value, especially on a simple dataset such
as nuScenes, which is supported by these results.

Since AVA scenes often involve at most two people and
DexYCB inherently includes only one hand and one object,
we only go beyond two agents on nuScenes. However, PAR’s
ability to handle more than 3 agents could be useful in tasks
with complex group interactions, such as team sports like
basketball, where many agents play key roles simultaneously.

12. Additional Case Study Implementation De-
tails

We stabilize learning by using Exponential Moving Average
(EMA) for training our experiments with a decay rate of
0.999 for action prediction and object translation/rotation
estimation, and 0.9999 for car trajectory prediction.

12.1. Car Trajectory Prediction

Tokenization Instead of discretizing the xy position space,
we discretize the motion, resulting in discrete velocity or ac-
celeration tokens computed as follows. We take each agents
ground truth trajectory (past and future), shift it so that the
trajectory starts at x, y = 0, 0, and then rotate the trajectory
such that its initial heading at t = 0 is 0 radians. We divide
velocity space into 128 even bins in [�18, 18] meters. We

4

A
R

2-
A

ge
nt

 P
A

R
A

R
2-

A
ge

nt
 P

A
R

Rotation Prediction Progression (Sampled Every 5 Frames)
t

Figure 12. Rotation prediction qualitative results. We show results from two videos. The projected 3D model in blue has the ground-truth
translation for visualization purposes and our predicted rotation. In the top row (AR), the results depict the object of interest as the sole
agent, while the bottom row (2-agent PAR) demonstrates improved performance by incorporating the human hand as a second agent in the
grasping interaction.

then, separately for x and y, take the difference between each
pair of coordinates in the trajectory, to get a length T � 1
sequence of deltas. Each of these deltas is mapped to a bin
index.

We first experimented with velocity tokens, taking the
Cartesian product of bin space to give each xy-delta one
single integer index between 1 and 128 ⇤ 128 = 16384. To
get acceleration tokens, we take the difference between each
x delta and y delta, and bin these differences into 13 bins.
We then take the Cartesian product of bin space to get a
vocabulary between 1 and 13 ⇤ 13 = 169.

Location Positional Encoding (LPE) We implement our
location positional encoding as follows.

We first compute relative location to the agent we are
predcting (the “ego” agent) at the first timestep of the history.
The ego agent trajectory is shifted to be at location (0, 0) at
time t = 0, and all other agents are shifted to be relative
to the ego agents position. We also rotate the ego agent
trajectory to have a heading of 0, and rotate all other agents

trajectories relative to this ego agent trajectory.
We normalize these relative locations (in meters) to be

between 0 and 1. We then quantize these normalized loca-
tions to be an integer between 0 and 100. We next pass these
locations (x and y separately) into a sin-cos positional en-
coding. Instead of operating on sequence position indices,
the positional encoding operates on the quantized locations.
We compute separate positional encodings for x and y. The
encoding dimensions is half of the hidden dimension, and
we concatenate the x and y encodings to get one encoding.
We then sum the result of this encoding to the model inputs
at training for the full trajectory (history and future).

At inference, we compute this encoding on the full trajec-
tory (history and future) for agents 1 to N-1, but for our ego
agent, we only use the history location ground truth. To get
the future locations, at each sampling step, we integrate over
our velocity or acceleration token to update the predicted
location one step at a time, and then pass that location into
our encoding.

5

A
R

2-
A

ge
nt

 P
A

R

Translation Prediction Progression (Sampled Every 5 Frames)
t

A
R

2-
A

ge
nt

 P
A

R

Figure 13. Translation prediction qualitative result. We show results from two videos. The projected 3D model in blue has the ground-truth
rotation for visualization purposes and our predicted translation. In the top row (AR), the results depict the object of interest as the sole
agent, while the bottom row (2-agent PAR) demonstrates improved performance by incorporating the human hand as a second agent in the
grasping interaction.

Evaluation dataset Since the nuScenes test set can only
be evaluated by submitting to the leaderboard, but we are
interested in demonstrating the effectiveness of PAR over
AR, we evaluate on the nuScenes validation set.

12.2. Object Pose Estimation
As mentioned in the main text, we use relative translations
with respect to the hand location for computing the PAR
results. In translation prediction, the relative translation is
defined with respect to the hand’s position at the current
timestep. This means the hand token is always treated as
the origin (a zero vector) at each timestep, while the object
translation corresponds to the difference between the current
positions of the hand and the object.

For rotation prediction, however, we cannot compute the
object rotation relative to the hand because our dataset does
not provide hand rotation information. Instead, for the hand
token, we compute the relative translation with respect to
the hand’s position in the first frame of the sequence. This

ensures the hand location is only treated as the origin in the
first timestep, enabling the hand’s motion to influence the
rotation prediction throughout the sequence.

For training both prediction tasks, we stabilize learning
by employing Exponential Moving Average (EMA); rota-
tion prediction uses a decay rate of 0.999, while translation
prediction uses a decay rate of 0.99. Both prediction tasks
use the AdamW optimizer with learning rate of 10�4.

13. Supplementary Video
Our supplementary video contains the full video for all qual-
itative results shown in this paper, and additional qualitative
results. No temporal smoothing is applied, nor are any other
modifications made to the results shown in the videos.

6

	Introduction
	Related Work
	Poly-Autoregressive Modeling
	Problem Definition
	The Poly-Autoregressive Framework
	Task-Specific Considerations
	Framework Implementation Details

	Case Study 1: Social Action Forecasting
	Experimental Setup
	Results

	Case Study 2: Multiagent Car Trajectory Prediction
	Experimental Setup
	Results

	Case Study 3: Object Pose Forecasting During Hand-Object Interaction
	Experimental Setup
	Results

	Discussion
	Acknowledgements
	Related Work: Case Studies
	Additional PAR Framework Details
	Implementation details
	Architecture Details

	Additional Experimental Results
	Additional Results on AVA Action Forecasting
	Additional Results on Object Pose Estimation
	Additional Results on Car Trajectory Prediction
	Results with more than Three Agents

	Additional Case Study Implementation Details
	Car Trajectory Prediction
	Object Pose Estimation

	Supplementary Video

