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Supplementary Material

1. Theoretical Basis for Concept Lattice
Based on the literature, as noted in the work from Duda
et al. [4], we extend the observations of Boiman et al.
[2] as a theoretical justification for the proposed nearest
neighbor-based concept lattice, which approximates the
gold-standard Naive Bayes classifier for constructing the
adjacency set.

Theorem 1 (k-NN Approximation to Naive Bayes in Rd).
Let x ∈ Rh×w×c represent an image with dimensions
height h, width w, and channels c. Let the mapping func-
tion ϕ : Rh×w×c → Rd project the image x into a latent
feature space Rd, where d ≪ hwc. Assume that the latent
features z := ϕ(x) are conditionally independent given the
class label C ∈ C.

Then, the k-Nearest Neighbors (k-NN) classifier operat-
ing in Rd converges to the Naive Bayes classifier as the
sample size N → ∞, the number of neighbors k → ∞,
and k/N → 0. Specifically,

lim
N→∞

P
(
Ck-NN(ϕ(x)) = CNB(x)

)
= 1. (1)

Proof Outline: Let D = {(xi, yi)}Ni=1 be a dataset consist-
ing of images xi ∈ Rh×w×c and their corresponding class
labels yi ∈ C. Each image xi is mapped to a latent space Rd

through the mapping function ϕ : Rh×w×c → Rd, resulting
in a latent feature vector zi := ϕ(xi).
We assume the following:
• The latent feature vectors ϕ(x) are conditionally indepen-

dent given the class label y.
• The representation function ϕ(x) preserves the class-

conditional structure in Rd, such that images of the same
class remain clustered in proximity to one another.

• d is sufficiently large ensuring high separability between
classes while remaining lower-dimensional than the orig-
inal input space, i.e., in d ≪ hwc.

Proof: We follow the outline above proceeding step by step.
Step 1: Bayes Optimal Classifier (Naive Bayes) The
Bayes optimal classifier is defined as the classifier that mini-
mizes the expected classification error by choosing the class
that maximizes the posterior probability P (C = c|x). Un-
der the Naive Bayes assumption, the posterior decomposes
as follows:

P (C = c|x) = P (x|C = c)P (C = c)

P (x)
. (2)

Given the conditional independence of z in Rd, the
class-conditional likelihood P (x|C = c) is factor-

ized over the components of the latent vector ϕ(x) =
(ϕ1(x), . . . , ϕd(x)) , i.e.,

P (x|C = c) =

d∏
j=1

P (ϕj(x)|C = c). (3)

Thus, the decision rule of the Naive Bayes classifier be-
comes:

CNB(x) = argmax
c∈C

P (C = c)

d∏
j=1

P (ϕj(x)|C = c). (4)

Step 2: k-Nearest Neighbor Classifier in Rd

The k-NN classifier operates in the latent space Rd, assigns
a class label Ck-NN to a query vector ϕ(x) by selecting the
nearest instance in Rd. For two images x and xi, we can
defined it formally as:

Ck-NN = argmax
i

sim(ϕ(x), ϕ(xi)) =
⟨ϕ(x), ϕ(xi)⟩
∥ϕ(x)∥∥ϕ(xi)∥

.

(5)
The k-NN classifier assigns the label to the query im-

age x by aggregating the labels of its k -nearest neighbors
Nk(x) in the latent space. This is formally described as:

Ck-NN(ϕ(x)) = argmax
c∈C

∑
xi∈Nk(x)

I(yi = c), (6)

where I(yi = c) is the indicator function, returning 1 if
yi = c and 0 otherwise.

Step 3: Convergence of k-NN to Bayes Optimal Classi-
fier
As established by Covert & Hart et al. [3] in statistical
learning theory, the k-NN classifier converges to the Bayes
optimal classifier as N → ∞, provided that k → ∞ and
k/N → 0. That is, for sufficiently large N and k, the de-
cision rule of the k-NN classifier approximates that of the
Bayes optimal classifier CBayes(x), i.e.,

lim
N→∞

P (CK-NN(ϕ(x)) = CBayes(x)) = 1. (7)

This convergence holds because, with increase in
N , Nk(x) increasingly reflects the local distribution of
data around x, which aligns with the underlying class-
conditional probability distribution.



Step 4: Consistency of k-NN with Naive Bayes in Rd

Given the Naive Bayes assumption that the components
ϕj(x) of the latent representation ϕ(x) are conditionally in-
dependent given the class label, the Bayes optimal classifier
in this latent space is precisely the Naive Bayes classifier
CNB(x) . Therefore, we have:

CBayes(x) = CNB(x), (8)

where CBayes(.) operates on the latent representations
ϕ(x). Combining equation 7 with the equation 6, we con-
clude that:

lim
N→∞

P (CK-NN(ϕ(x)) = CNB(x)) = 1. (9)

This establishes that the CLIP-based K-NN classifier
converges to the Naive Bayes classifier as the sample size
grows, provided the assumptions of conditional indepen-
dence hold in the latent space Rd.
Remarks:
• In high-dimensional spaces, Bayers et al. [1] proposed

concentration of distances implying that Euclidean dis-
tance and Cosine similarity perform similarly as d → ∞,
ensuring that the use of cosine similarity in latent space
provides robust distance-based classification.

• In our implementation, the mapping function ϕ :
Rh×w×c → Rd is a pre-trained CLIP model, serving for
dimensionality reduction where d ≪ hwc.

• The CLIP model’s latent space captures abstract and se-
mantic features, reducing the dependency between the
components of ϕ(x). This makes the assumption of con-
ditional independence more plausible in Rd, allowing
Naive Bayes to model the class-conditional likelihoods
accurately in the latent space.

• For k-NN to converge to optimal Bayes classifier, k must
satisfy k → ∞ and N → ∞.

2. Adjacency Inflection Analysis

This section examines the breaking point of existing algo-
rithms in preserving adjacency—specifically, at what sim-
ilarity threshold these methods begin to fail. To evaluate
robustness, we analyze the performance of each algorithm
as semantic similarity increases, using fine-grained classes
from ImageNet-1k and other fine-grained datasets. Figure
1 illustrates the relationship between CLIP-based semantic
similarity (circular axis, %) and average adjacency accuracy
(radial axes).

Results show that FMN and ESD degrade significantly
at 78% similarity, while Receler fails at 80%. Although
SPM demonstrates moderate resilience, it begins to falter
beyond 90% similarity, marking a critical threshold where
all existing methods fail to preserve adjacency effectively.

Similarity Score

Comparison of Erasing Methods: Similarity Scores vs 
Average Adjacency Accuracy

Figure 1. Radar plot comparing FADE with existing unlearn-
ing methods (ESD, FMN, SPM, Receler). For a fair analysis,
methods with Aer ≤ 20% are considered. The plot shows struc-
tural similarity scores (circular axis, %) and adjacency accuracy
(radial axes) on concepts from the ImageNet-1k dataset. Most
methods begin to degrade beyond a similarity score of 70%, with
SPM remaining resilient until 90% and FADE demonstrating the
highest robustness.

In stark contrast, FADE maintains high adjacency accu-
racy even at elevated similarity levels, demonstrating supe-
rior robustness. These findings validate FADE’s efficacy in
adjacency-aware unlearning, outperforming state-of-the-art
approaches under challenging fine-grained conditions.

3. Adjaceny Retention Analysis
During training, FADE explicitly considers the top-k adja-
cent classes (with k = 5 in all experiments). However, to
ensure FADE’s generalization beyond the explicitly trained
adjacent classes, we evaluate its performance on unseen ad-
jacent concepts (i.e., classes with rank > 5).

We assess FADE’s adjacency retention by analyzing
classification accuracy across the top-10 adjacent classes for
each target concept (as detailed in Table 5). Using classi-
fiers trained on their respective datasets, we measure reten-
tion accuracy for Stanford Dogs, Oxford Flowers, and CUB
datasets. Figure 2 illustrated a clear trend: as the semantic
similarity decreases (from the closest adjacent class A1 to
the furthest A10), retention accuracy consistently improves.

To further validate this trend, we extend our analysis to
the top-100 adjacent classes per target concept, where the
first 5 classes are seen during training, and the remaining
95 are unseen. As shown in Figure 3, FADE consistently
maintains retention accuracy above 75% across both seen
and unseen adjacent classes, demonstrating its strong gener-
alization capability even after erasure of the target concept.
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Figure 2. For each target class in Table 5, we illustrate the perfor-
mance of FADE on the top-10 adjacent classes. Adjacent classes
are ordered by similarity scores. It is observed that FADE gener-
alizes well on all adjacent classes after unlearning the target class.

4. Extended Quantitative Results

As previously discussed, we utilize Stanford Dogs, Oxford
Flower, and CUB datasets to evaluate the proposed FADE
and existing state-of-the-art algorithms. We present the ad-
jacency set with their similarity scores in Table 5.

We report the classification accuracy for each class in
the adjacency set of each target class from the Stanford
Dogs, Oxford Flowers, and CUB datasets in Tables 2, 3,
and 4. These results extend the findings reported in Table
1 of the main paper. The original model (SD) has not un-
dergone any unlearning, so higher accuracy is better. The
remaining models are comparison algorithms, and for each
of them, the model should achieve lower accuracy on the
target class to demonstrate better unlearning and higher ac-
curacy on neighboring classes to show better retention of
adjacent classes. From Tables 2, 3, and 4, it is evident that
FADE effectively erases the target concept while preserving
adjacent ones, outperforming the comparison algorithms by
a significant margin across all three datasets, followed by
SPM and CA. This demonstrates the superior capability at
erasure and retention of the proposed FADE algorithm.

5. Extended Qualitative Results

To provide a focused and detailed view of the results, Fig-
ures 4 and 5 (borrowed from the main paper) visualize the
performance of various unlearning algorithms.

Figure 4, 6, 7, and 8 present the generation results for
one target class and its adjacency set from each dataset, be-
fore and after applying unlearning algorithms. The first row
in each of these figures displays images generated by the
original Stable Diffusion (SD) model, followed by outputs
from each unlearning method. Consistent with the quantita-
tive results in Table 1 (main paper), ESD, FMN, and Receler
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CUBUnseen Classes
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Figure 3. Extended experiment for Adjaceny Retention from 5
unseen concepts to 95 unseen concepts. We observe that the per-
formance remains consistent for all unseen classes.

fail to retain fine-grained details of neighboring classes. CA
and SPM perform slightly better, retaining general struc-
tural features, but they struggle with specific attributes such
as color and texture, especially in examples like dog breeds
(e.g., Brittany Spaniel, Cocker Spaniel), bird species (e.g.,
Florida Jay, Cardinal), and flower species. These methods
often result in incomplete erasure of the target concept or
poor retention of neighboring classes.

In contrast, FADE achieves a superior balance by effec-
tively erasing the target concept while preserving the fine-
grained details of related classes, as demonstrated by the
sharper distinctions in the adjacency sets. FADE’s capabil-
ity is further evaluated on ImageNet-1k for target classes
such as Balls, Trucks, Dogs, and Fish. Table 5 lists the
neghiboring classes identified using Concept Lattice to con-
struct the adjacency set for each target class. Notably, adja-
cency sets generated by Concept Lattice closely align with
the manually curated fine-grained class structures reported
by Peychev et al. [8], validating the accuracy and reliability
of Concept Lattice.

As shown in Table 2 of the main paper, FADE out-
performs all baseline methods, achieving at least a 12%
higher ERB score compared to SPM, the next-best algo-
rithm. FMN and CA exhibit poor performance in both ad-
jacency retention and erasure tasks, highlighting the robust-
ness of FADE in fine-grained unlearning scenarios.

Further, human evaluation results for FADE and baseline
algorithms are presented in Table 1, capturing erasing accu-
racy (Aer) and average adjacency retention accuracy (Âadj).
We also capture their balance through the proposed Erasing-
Retention Balance (ERB) score.

According to human evaluators, Receler achieves the
highest Aer (86.66%) but fails in adjacency retention, with
Âadj close to zero, resulting in a minimal ERB score (0.06).
FMN and CA show suboptimal performance, with FMN
favoring erasure and CA favoring retention, yielding ERB
scores of 43.07 and 38.43, respectively.

FADE outperforms all baselines with the highest ERB
score (59.49), balancing effective erasure (Aer of 51.94%)
and strong adjacency retention (Âadj of 69.62%). These re-



Aer Âadj ERB
ESD 73.33 37.22 49.38
FMN 49.16 38.33 43.07
CA 30.13 53.05 38.43
SPM 40.83 61.66 49.13
Receler 86.66 0.03 0.06
FADE (ours) 51.94 69.62 59.49

Table 1. Comparison of FADE with state-of-the-art unlearn-
ing methods based on evaluations by human participants. If
prediction of human evaluator is correct, a score of 1 was given;
otherwise, a score of 0 was given. The performance is reported
as a percentage. According to the user study, FADE effectively
balances the erasure of the target concept with the retention of
neighboring concepts.

sults highlight FADE’s ability to achieve adjacency-aware
unlearning without significant collateral forgetting, setting
a benchmark for fine-grained erasure tasks.

6. Implementation Details

For all experiments and comparisons, we use Stable Diffu-
sion v1.4 (SD v1.4) as the base model. The datasets con-
structed (discussed in Section 3.3 of the main paper) are
generated using SD v1.4, and the same model is used to
generate images for building the Concept Lattice. In Equa-
tion 9 (of the main paper), we set the base parameters as λer:
3.0, λadj: 1000, λguid: 50. These values may vary depending
on the specific target class being unlearned. For equation
6, value of δ is 1.0 across all experiments. Throughout all
experiments, we optimize the model using AdamW, training
for 500 iterations with a batch size of 4. All the experiments
are performed on one 80 GB Nvidia A100 GPU card.

For all baseline algorithms, we utilize their official
GitHub repositories and fine-tune only the cross-attention
layers wherever applicable(ESD[6], CA[7]). In the case of
CA[7], each target class is assigned its superclass as an an-
chor concept. For instance, for the Welsh Springer Spaniel,
the anchor concept is its superclass, dog. Similarly, for con-
cepts in the Stanford Dogs dataset, the anchor concept is set
to dog, while for the Oxford Flowers dataset, it is flower,
and for CUB, it is bird. This selection strategy is consis-
tently applied when defining preservation concepts while
evaluating UCE.

For calculation of Aer and Âadj in Table 1 of main paper,
we utilize ResNet50 as the classification model. Specif-
ically, we fine-tune ResNet50 on 1000 images generated
for each class in Stanford Dogs, Oxford Flowers and CUB
datasets. For ImageNet classes in Table 2 and Table 3 of
main paper we utilize pre-trained ResNet50. For I2P related
evaluations, we utilize NudeNet.

7. Additional Analysis
Choosing an adjacent concept for CA: We conduct an
additional experiment using English Springer as the an-
chor concept for Welsh Springer Spaniel in Concept Ab-
lation [7]. This yields an ERB score of 69.40, significantly
lower than FADE’s 95.97. While WSS→ES improves era-
sure compared to WSS→Dog, it severely degrades retention
(Âadj=61.4), indicating disruption in the learned manifold.
Adversarial Robustness: To assess FADE’s resilience
against adversarial prompts, we conducted an experiment
using the Ring-a-Bell! [5] adversarial prompt generation
algorithm. For Table 1 of the main paper, we evaluated
prompts on both the original and unlearned models across
Stanford Dogs, Oxford Flowers, and CUB datasets. The tar-
get class accuracies (lower is better) for the original model
were 92.8, 65.4, and 45.8, while FADE significantly re-
duced them to 20.8, 1.3, and 5.4, demonstrating strong ro-
bustness against adversarial prompts.
Concept Unlearning Induces Concept Redirection: Our
experiments reveal an intriguing phenomenon where un-
learning a target concept often results in its redirection to an
unrelated concept. As illustrated in Figure 9, this effect is
particularly evident with algorithms like ESD and Receler.
For example, after unlearning the “Blanket Flower,” the
model generates a “girl with a black eye” when prompted
for “Black-eyed Susan flower” and produces an image of
“a man named William” for the prompt “Sweet William
flower.” Similarly, for bird classes such as “Cliff Swallow”
and “Tree Swallow,” the unlearning process redirects the
concepts to unrelated outputs, such as trees or cliffs.

Interestingly, this redirection is primarily observed in al-
gorithms like ESD and Receler, which struggle to maintain
semantic coherence post-unlearning. In contrast, SPM and
the proposed FADE algorithm demonstrate robust perfor-
mance, effectively erasing the target concept without induc-
ing unintended redirections, thereby preserving the model’s
semantic integrity.
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SD (Original) ESD FMN CA SPM Receler FADE (ours)
Target Concept - 1 Welsh Springer Spaniel 99.10 0.00 1.24 37.00 42.27 0.00 0.45

Adjacent Concepts

Brittany Spaniel 95.42 0.00 0.00 58.00 54.60 0.00 81.85
English Springer 89.72 0.00 0.00 51.00 24.40 0.00 89.86
English Setter 94.00 0.00 0.00 56.84 73.85 0.00 93.00
Cocker Spaniel 98.85 40.00 0.00 82.25 84.10 0.00 98.82
Sussex Spaniel 99.68 60.62 0.00 85.00 88.75 12.00 99.65

Target Concept - 2 German Shepherd 99.62 0.00 0.00 20.85 0.89 0.00 0.00

Adjacent Concepts

Malinois 99.00 0.00 0.00 51.86 57.43 0.00 96.29
Rottweiler 98.10 0.00 0.25 54.58 70.24 0.00 94.25
Norwegian elkhound 99.76 10.00 0.00 63.00 59.00 0.00 99.65
Labrador retriever 95.00 30.00 1.86 73.60 73.65 0.00 88.20
Golden retriever 99.86 60.00 0.88 75.44 93.81 14.00 99.44

Target Concept - 3 Pomeranian 99.84 0.00 1.85 32.00 66.49 0.00 0.24

Adjacent Concepts

Pekinese 98.27 0.00 0.00 64.63 86.29 0.00 84.24
Yorkshire Terrier 99.90 40.00 0.00 89.00 98.62 0.64 99.62
Shih Tzu 98.85 60.00 0.00 92.00 95.65 2.55 93.65
Chow 100.00 10.00 1.20 87.60 98.22 3.27 100.00
Maltese dog 99.45 60.00 1.86 88.88 97.45 0.00 96.45

Table 2. Comparison of Classification Accuracy on Stanford Dogs Dataset. We compare the classification accuracy (in %) of various
models on classes from the Stanford Dogs dataset before and after unlearning on each class in the adjacency set. The original model (SD)
has not undergone any unlearning (higher accuracy is better), while the rest are comparison unlearning algorithms. For each algorithm, the
model should exhibit lower accuracy on the target class and higher accuracy on the adjacent concepts. It is evident that FADE significantly
outperforms all the comparison algorithms.

SD (Original) ESD FMN CA SPM Receler Ours
Target Concept Barbeton Daisy 91.50 0.00 24.45 29.89 30.00 0.00 0.12

Adjacent Concepts

Oxeye-Daisy 99.15 20.00 4.20 75.60 86.86 1.85 95.24
Black Eyed Susan 97.77 70.00 2.20 79.08 94.00 6.00 94.25
Osteospermum 99.50 50.00 0.85 90.20 94.80 0.60 95.65
Gazania 93.50 0.00 1.00 62.28 83.84 0.00 77.45
Purple Coneflower 99.80 100.00 1.65 85.80 98.85 23.22 99.87

Target Concept Yellow Iris 99.30 0.00 0.00 32.45 51.69 0.00 0.00

Adjacent Concepts

Bearded Iris 85.25 0.00 0.00 20.27 63.60 0.65 78.68
Canna Lily 98.72 0.00 0.00 54.45 76.48 1.63 95.68
Daffodil 94.65 10.00 5.25 59.89 88.00 0.00 92.45
Peruvian Lily 98.50 20.00 0.00 64.00 88.20 0.00 93.45
Buttercup 98.00 0.00 32.00 78.46 92.23 0.48 94.00

Target Concept Blanket Flower 99.50 0.00 37.00 73.00 46.00 0.00 0.00

Adjacent Concepts

English Marigold 99.56 0.00 3.00 94.25 98.00 0.00 99.43
Gazania 93.55 0.00 0.00 66.87 74.24 0.00 83.00
Black Eyed Susan 97.77 0.00 0.47 72.84 93.45 1.27 97.00
Sweet William 97.75 0.00 0.68 66.62 70.00 2.45 93.88
Osteospermum 99.50 20.00 0.25 92.68 86.45 0.83 83.20

Table 3. Comparison of Classification Accuracy on Oxford Flower Dataset. We compare the classification accuracy (in %) of various
models on classes from the Oxford Flower dataset before and after unlearning on each class in the adjacency set. The original model (SD)
has not undergone any unlearning (higher accuracy is better), while the rest are comparison unlearning algorithms. For each algorithm, the
model should exhibit lower accuracy on the target class and higher accuracy on the adjacent concepts. It is evident that FADE significantly
outperforms all the comparison algorithms.
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SD (Original) ESD FMN CA SPM Receler Ours
Target Concept Blue Jay 99.85 0.00 0.00 31.42 14.68 0.00 0.00

Adjacent Concepts

Florida Jay 98.55 0.00 1.40 46.25 69.88 0.00 98.24
White Breasted Nuthatch 99.00 5.00 0.00 72.00 85.08 0.00 98.44
Green Jay 99.90 10.00 0.26 52.00 85.00 0.00 99.20
Cardinal 100.00 30.00 0.11 86.85 96.43 3.48 100.00
Blue Winged Warbler 92.97 20.00 0.54 49.28 64.24 0.00 90.65

Target Concept Black Tern 86.65 0.00 4.00 22.45 13.87 0.00 0.00

Adjacent Concepts

Forsters Tern 92.35 0.00 2.86 35.29 41.20 0.00 90.65
Long Tailed Jaeger 97.66 30.00 9.85 81.08 90.67 0.66 90.84
Artic Tern 89.50 0.00 0.45 22.20 37.85 0.00 90.26
Pomarine Jaeger 88.29 0.00 0.82 52.80 63.64 0.00 80.85
Common Tern 98.10 10.00 0.60 78.20 77.46 0.00 96.45

Target Concept Barn Swallow 99.40 0.00 1.25 57.06 7.48 0.00 0.45

Adjacent Concepts

Bank Swallow 9.79 0.00 0.65 54.60 30.21 0.00 93.60
Lazuli Bunting 99.75 70.00 0.65 82.00 88.40 0.00 99.00
Cliff Swallow 93.20 0.00 0.00 77.00 47.63 0.86 91.25
Indigo Bunting 96.80 70.00 17.46 87.68 93.00 5.22 96.45
Cerulean Warbler 96.90 50.00 2.65 88.40 89.00 0.45 96.80

Table 4. Comparison of Classification Accuracy on CUB Dataset. We compare the classification accuracy (in %) of various models on
classes from the CUB dataset before and after unlearning on each class in the adjacency set. The original model (SD) has not undergone
any unlearning (higher accuracy is better), while the rest are comparison unlearning algorithms. For each algorithm, the model should
exhibit lower accuracy on the target class and higher accuracy on the adjacent concepts. It is evident that FADE significantly outperforms
all the comparison algorithms.
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Figure 4. Qualitative comparison between existing and proposed algorithms for erasing target concepts and testing retention on
neighboring fine-grained concepts. Results are shown for one target concept each from the Stanford Dogs, Oxford Flowers, and CUB
datasets.

Vechev. Automated classification of model errors on ima-
genet. Advances in Neural Information Processing Systems,
36:36826–36885, 2023.
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Figure 5. Comparison of FADE with various algorithms for erasing the ’garbage truck’ class in Fine-Grained and Coarse-Grained Unlearn-
ing. The target class, adjacency set and the retain set and constructed from the ImageNet-1k dataset.
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Figure 6. Qualitative comparison of FADE with various algorithms for erasing German Shepherd and Pomeranian while retaining closely
looking breeds extracted through concept lattice from the Stanford Dogs dataset.
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Figure 7. Qualitative comparison of FADE with various algorithms for erasing Yellow Iris and Blanket Flower while retaining other
similar-looking flowers through concept lattice from the Oxford Flowers dataset.
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Figure 8. Qualitative comparison of FADE with various algorithms for erasing Blank Tern and Barn Swallow while retaining other closely
looking bird species extracted through concept lattice from CUB dataset.
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Figure 9. Illustration of concept redirection observed after unlearning target concepts using various algorithms. For ESD and Receler,
the erasure of “Blanket Flower” redirects to unrelated outputs, such as a “girl with a black eye” for “Black-eyed Susan flower” and “a
man named William” for “Sweet William flower.” Similar redirection is seen with bird classes like “Cliff Swallow” and “Tree Swallow.”
In contrast, SPM and FADE effectively erase target concepts without inducing semantic redirection, ensuring coherence and retention of
related knowledge.
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