SMILE: Infusing Spatial and Motion Semantics in Masked Video Learning

Supplementary Material

In this appendix, we present supplementary analysis and
detailed experimental validations. Section A provides an
extensive state-of-the-art comparison for finetuning perfor-
mance on K400 and SSv?2 datasets. Section B further evalu-
ates the generalization capability of SMILE on additional
downstream video tasks. A detailed comparison against
prior CLIP adaptation methods is provided in Section C.
Section D shows more results for learning without natural
videos. In Section E, we include additional experiments,
such as performance under fixed training budgets, extended
ablation studies with larger datasets, and qualitative visu-
alizations. Finally, Section F specifies dataset details and
clearly outlines the training and evaluation procedures used
throughout our experiments.

A. Extensive Comparison on K400 and SSv2

In the main paper, due to the space limit, we compare only
with prior self-supervised methods using the same pretrain-
ing setup—specifically, a ViT-B backbone trained for 600
epochs on K400 and 800 on SSv2 datasets. Here, we pro-
vide a broader comparison, including self-supervised meth-
ods with varying pretraining setups and numerous super-
vised methods. Results for K400 and SSv2 finetuning are
presented in Table 1 and Table 2, respectively.

Our method not only reaches state of the art among all
self-supervised methods but also matches or even surpasses
many supervised methods that use specialized backbones,
such as the hierarchical 3D transformer in MViTv2 [23]
(more than +0.2% on K400 and +1.6% on SSv2) and the
multi-head relation aggregation in Uniformer [21] (more
than +0.1% on K400, +0.9% on SSv2), highlighting its abil-
ity to learn superior representations without heavily cus-
tomized architectures. Additionally, we significantly out-
perform supervised methods using the same backbone (ViT-
B), e.g. TimeSformer [2] by more than +2.4% on K400 and
+12.6% on SSv2 and Mformer [30] by more than +3.4% on
K400 and +5.4% on SSv2. This demonstrates our method’s
strength in capturing better spatio-temporal dynamics than
these supervised approaches.

Our approach significantly improves on VideoMAE [43]
baseline, achieving gains of +3.6% on K400 and +4.9%
on SSv2 for ViT-S, when trained for 800 epochs. Simi-
larly, for ViT-B, it achieves an improvement of +3.1% on
K400 and +3.6% on SSv2, when trained for 600 epochs on
K400. Furthermore, our method outperforms all prior self-
supervised approaches under similar pretraining settings,
including the same backbone, dataset, and training epochs
(e.g., K400 on ViT-B for 600/800 epochs). This includes

surpassing methods such as CV-MAE-V [27], which em-
ploys contrastive video masked autoencoding, SIGMA [36],
which uses Sinkhorn-Guided feature clustering, and Om-
niMAE [!1], which reconstructs from both images and
videos. These results underline the effectiveness of our
method across diverse self-supervised learning strategies.

The tables also compare our method with approaches
that use significantly longer training schedules, such as
MVD [46], ST-MAE [10], and MotionMAE [49]. MVD
achieves strong performance but relies on a resource-
intensive pipeline, involving 1200 epochs of pretraining
for both VideoMAE [43] and MAE [14], followed by 400
epochs of distillation, making direct comparisons challeng-
ing. Despite training for only 600 epochs, our method sur-
passes MVD [46] by 0.4% on K400 finetuning and consis-
tently outperforms other methods trained for 1600 epochs
on K400 or 2400 epochs on SSv2. This includes motion-
aware methods like MotionMAE [49], MME [40], MG-
MAE [16], and MGM [§8], demonstrating the superior train-
ing efficiency of our approach. When trained for 1200
epochs SMILE achieves a boost of 0.3% on both K400 and
SSv2 finetuning showing the scalability of our method for
longer training schedules.

To summarize, our method surpasses many supervised
methods and achieves state-of-the-art performance among
video SSL methods while maintaining training efficiency.

B. Generalization to More Temporal Tasks

In the main paper, we show the generalization capability of
our method for diverse downstream settings in SEVERE-
benchmark. Here we show the generalization of our method
to more video understanding tasks. In particular, we eval-
uate temporally aware tasks: Unsupervised Video Object
Segmentation (Un-VOS) and Temporal Action Localization
(TAL). The goal is to evaluate the motion modeling capa-
bility of video representations with TAL requiring motion
boundary awareness and Un-VOS requiring object motion
propagation modeling.

B.1. Unsupervised Video Object Segmentation

Setup. We adopt the evaluation approach from [36] to
assess the learned temporal and spatial features via unsu-
pervised video object segmentation using the benchmark
introduced by [35]. Unlike conventional action recogni-
tion benchmarks that aggregate features into a single global
representation, this task examines the encoder’s capability
to generate consistent temporal object segmentation maps.
Specifically, extracted space-time features are grouped us-



Table 1. Detailed comparison with supervised and self-
supervised pretraining methods for full finetuning on Kinetics-
400 (K400). * denotes results obtained by our evaluation. Params
denote the number of parameters in millions. Our SMILE outper-
forms many supervised methods, achieves the best performance
among self-supervised methods, and demonstrates a faster conver-
gence.

Table 2. Detailed comparison with supervised and self-
supervised pretraining methods for full finetuning on
Something-Something V2 (SSv2). x denotes results obtained
by our evaluation. Params denote the number of parameters in
millions. Our SMILE outperforms many supervised methods,
achieves the best performance among self-supervised methods,
and demonstrates a faster convergence.

Method Backbone | Epochs |Pretrain/Top-1Params Method Backbone | Epochs [Pretrain/Top-1/Params
supervised supervised

Mformer [30] Mformer-B - K400 [79.7| 109 Mformer [30] Mformer-B - K400 | 66.7 | 109
VideoSwin [25] | Swin-B - K400 | 80.6 | 88 VideoSwin [25] | Swin-B - K400 | 69.6 | 88
TimeSformer [2] | ViIT-B - K400 | 80.7 | 430 TimeSformer [2] | ViIT-B - K400 [59.5] 121
MViTvl [9] MViTv1-B - K400 |80.2 | 37 MViTvl [9] MViTv1-B - K400 | 67.7| 37
MVITv2 [23] MViTv2-B - K400 | 829 | 52 MViTv2 [23] MViTv2-B - K400 |70.5| 52
Uniformer-B [21]|{Uformer-B - K400 | 83.0 50 Uniformer-B [21]|Uformer-B - K400 | 71.2 50
self-supervised self-supervised

VideoMAE™ [43]|  ViT-S 800 | K400 [759]| 22
VideoMAE [43] | ViT-S | 1600 | K400 |{79.0| 22
SMILE (ours) ViT-S 800 | K400 |79.5| 22
VideoMAE [43] | VIT-B | 800 | K400 |80.0| 87
VideoMAE [43] | VIT-B | 1600 | K400 |81.5| 87
ST-MAE [10] VIiTB | 1600 | K400 |81.3| 87
MVD [46] VIT-B  |1600+400] K400 |82.7| 87
MotionMAE [49]| VIT-B | 1600 | K400 |81.7 | 87
CMAE-V [27] ViT-B 800 | K400 |80.2| 87
CMAE-V [27] VIT-B | 1600 | K400 [80.9| 87

BEVT [45] ViT-B | 800+150| K400 |80.6 | 87
OmniMAE [11] | ViIiT-B 800 K400 | 80.8 | 87
SIGMA [36] ViT-B 800 K400 | 81.5| 87
MGM [8] ViT-B 800 K400 | 80.8 | 87
MGM [8] ViT-B 1600 K400 | 81.7 | 87
MME* [40] ViT-B 800 K400 | 81.5| 87
MME [40] ViT-B 1600 K400 | 81.8 | 87

MGMAE [16] ViT-B 800 | K400 |81.2| 87
MGMAE [16] ViT-B 1600 | K400 |81.8| 87
SMILE (ours) ViT-B 600 | K400 |83.1| 87
SMILE (ours) ViT-B 1200 | K400 [83.4| 87

ing k-means clustering with a given number of clusters (K),
then aligned to ground-truth object masks via the Hungar-
ian algorithm [20]. Segmentation accuracy is quantified
through mean Intersection over Union (mloU). The scenario
is labeled as clustering when K equals the actual object
count and as overclustering when K surpasses this number.
We follow the implementation from [36] and report mIoU
on DAVIS [31] and YTVOS [48].

Results. As shown in Table 3, SMILE obtains the best seg-
mentation performance across all settings except for DAVIS
clustering where it is the second best. In particular, we out-
perform prior motion modeling methods MGM and MG-
MAE by 4% and 6% on YTVOS clustering and by 6% and
7% on YTVOS overclustering. Interestingly, we also beat
SIGMA which explicitly clusters the reconstructed features
via Sinkhornkoop clustering. This demonstrates the supe-
rior motion modeling capability of our approach over stan-

OmniMAE [11] | ViT-B 800 SSv2 169.5| 87
VideoMAE [43] ViT-B 800 SSv2 [ 69.6| 87
VideoMAE [43] ViT-B 2400 SSv2 170.8| 87
CMAE-V [27] ViT-B 800 SSv2 | 69.7| 87
CMAE-V [27] ViT-B 1600 SSv2 | 70.5| 87

MME [40] ViT-B 800 SSv2 170.0| 87
MGM [8&] ViT-B 800 SSv2 170.6| 87
MGM [¢] ViT-B 2400 SSv2 | 72.1 87
SIGMA [36] ViT-B 800 SSv2 | 71.2| &7

MGMAE [16] ViT-B 800 SSv2 | 71.0| 87
MGMAE [16] ViT-B 2400 SSv2 | 723 | &7

SMILE (ours) ViT-B 800 SSv2 | 72.5| 87
VideoMAE™ [43]| ViT-S 800 K400 | 642 | 22
SIGMA [36] ViT-S 800 K400 | 68.7| 22
SMILE (ours) ViT-S 800 K400 [(69.1| 22

OmniMAE [11] | ~ViT-B 800 | K400 |69.0] 87
VideoMAE [43] | ViT-B 800 | K400 | 68.5| 87

MVD [46] VIT-B  |1600+400| K400 |72.5| 87
MME [40] ViT-B 800 | K400 |70.5| 87
SIGMA [36] ViT-B 800 | K400 |71.1| 87
MGMAE" [16] | ViT-B 800 | K400 |68.9| 87
MGM* [¢] ViT-B 800 | K400 |71.1| 87
SMILE (ours) ViT-B 600 | K400 |72.1| 87

SMILE (ours) ViT-B 1200 K400 |724| 87

dard pixel reconstruction, motion-guided pixel reconstruc-
tion, and feature clustering reconstruction approaches.

B.2. Temporal Action Localization

Setup. Temporal action localization (TAL) [24, 52, 55] is a
task that aims to identify categories of actions that occur in
a video and to locate the start and end timestamps of all ac-
tion instances. It requires the model to understand not only
the spatial semantics within the frames but also the tem-
poral dynamics across frame sequences to capture the ac-
tion process. We evaluated our SMILE as well as the com-
parative methods on two representative TAL benchmarks
THUMOS-14 [17] and ActivityNet-v1.3 [3]. We used the



Unsupervised Video Object Segmentation

Temporal Action Localization

Clustering Overclustering
Method YTVOS DAVIS YTVOS DAVIS THUMOS-14 ActivityNet-v1.3
VideoMAE [43] 34.1 29.5 61.3 56.2 58.5 37.3
MGM [§] 36.6 36.5 61.2 56.6 62.0 37.6
MGMAE [16] 34.5 31.0 60.1 57.5 56.3 37.3
SIGMA [36] 37.5 31.5 66.4 58.5 62.7 37.7
SMILE (ours) 40.5 32.7 67.0 59.5 65.6 38.0

Table 3. Generalization assessment on Unsupervised Video Object Segmentation and Temporal Action Localization. All methods
are evaluated on the ViT-B backbone pretrained on K400 with their publicly available checkpoints. SMILE outperforms prior masked
video modeling works on both tasks demonstrating a better temporal modeling capability for more complex video understanding tasks.

pretrained models from each method as the backbones for
video spatio-temporal feature extraction and finetuned them
with the TAL method ActionFormer [52] on both datasets
using the OpenTAD framework [24]. Following the com-
mon practice in the TAL community, we report the av-
erage mean average precision (mAP) over various tempo-
ral intersection of union (tloU) values, i.e., 10 tloU val-
ues [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95] for
ActivityNet-v1.3 and 5 tloU values [0.3, 0.4, 0.5, 0.6, 0.7]
for THUMOS-14.

Results. As shown in Table 3, our SMILE achieves
the highest average mAPs on both benchmarks. Specifi-
cally, on THUMOS-14, SMILE outperforms some meth-
ods by a large margin e.g. VideoMAE by 7% and MG-
MAE by 9%. On the more challenging and largescale
dataset ActivityNet-v1.3, it shows 0.3% improvement over
the second-best SIGMA. More notably, on ActivityNet-
v1.3, the performance of SMILE is on par with the state-of-
the-art TAL performance, which relies on fully supervised
finetuning with labeled Kinetics-400 videos (not shown in
the table). Overall, the results show that SMILE general-
izes better to more complex downstream video tasks than
the current masked video modeling approaches.

C. More comparisons with CLIP adaptations

In this section, we provide further comparisons between our
proposed SMILE and existing CLIP adaptation methods for
action recognition. Specifically, we consider two distinct
categories of CLIP-based adaptations: without intermedi-
ate pretraining and with intermediate pretraining. The
former approaches either jointly finetune the CLIP vision
and text encoders using labeled video-text pairs of the tar-
get dataset (e.g., X-CLIP [28], ViFi-CLIP [33], ILA [44])
or directly finetune the CLIP vision encoder with added
specialized spatio-temporal adaptation modules on labeled
videos from the target dataset (e.g., AIM [50], DUAL
Path [29]). In contrast, intermediate pretraining methods,
such as UMT [22] and ViCLIP [47] use the CLIP model and

intermediate video-text pairs for further pretraining to align
video and text modality using contrastive learning. Detailed
results of these comparisons are presented in Table 4.

We observe that SMILE significantly outperforms prior
adaptation methods that directly finetune the CLIP model
on the target dataset. It achieves the best performance on all
target datasets except K400, where it achieves comparable
results. This highlights the effectiveness of our approach as
a superior CLIP adaptation strategy which relies only on the
unlabeled videos for adaptation. Moreover, as demonstrated
in the main paper, SMILE surpasses adaptation methods
that also employ intermediate pretraining, UMT, and Vi-
CLIP. Notably, the performance gains are particularly pro-
nounced on motion-intensive datasets like GYM99, SSv2,
and EPIC, underscoring the critical importance of explicit
motion modeling an aspect often neglected in existing CLIP
adaptations. Our intuition is that CLIP features contain ob-
ject information like shape, boundaries, and location, which
guides the reconstruction task to focus on the overlaid ob-
jects as well as the original video semantics.

In summary, SMILE provides a robust CLIP adaptation
by reconstructing masked video inputs directly within the
CLIP visual feature space while explicitly integrating syn-
thetic motion cues.

D. Learning without Natural Videos

In the main paper, we show that our method can learn video
representations by overlaying object motions on clips from
natural videos, single frames from natural videos, single
natural images, or even black and noise images. This raises
the question about the effectiveness of using object mo-
tions alone and how they compare with learning from natu-
ral videos. To answer this we compare the performance of
learning from object motions only with learning from nat-
ural video data. Specifically, we generate video clips by
adding our synthetic object motions to randomly generated
noise images. As in the main paper, we take a noise image,
duplicate it 7" times to form a static video clip, and then



Finetuning Linear Probing

Method Intermediate Dataset K400 UCF GYM SSv2 EPIC UCF GYM SSv2 EPIC
CLIP [32] - 81.8 93.6 88.0 66.7 503|775 20.7 11.3 25.1
" Without intermediate p;e?rtfin?né 7777777777777777777777777777777777777
X-CLIP [28] - 83.8 92.0 752 574 527 - - - -
ViFi-CLIP [33] - 839 946 815 48.6 489 - - - -
AIM [50] - 839 940 903 664 584 - - - -
ILA [44] - 84.0 942 8277 650 60.8 - - - -

DUAL-Path [29] .

With intermediate pretraining

824 952 89.7 679 550|867 273 189 273
817 96.0 89.9 70.1 50.1 |88.0 264 18.8 282

ViCLIP [47] Intervid-10M [47]
UMT [22] K700 [4]
SMILE (ours) K400 [18]

83.1 96.4 90.8 719 63.3|83.8 30.2 23.7 34.6

Table 4. More comparison with CLIP adaptations. SMILE learns better video representations than both types of CLIP adaptations: with
and without intermediate pretraining. The performance gap is wider on motion-focused domains.

overlay objects with motion on top of it. We compare its
performance with learning from natural videos of the K400
dataset. We use ViT-S and ViT-B backbones for this exper-
iment and results are shown in Table 5.

We observe that learning with such augmented videos
significantly improves on no pretraining. Compared to the
VideoMAE baseline which uses 240K natural videos of
K400, learning from our object motions only with pixel
reconstruction shows a small gap in performance. This
highlights the effectiveness of video representations learned
only from the proposed object motions via unnatural videos
created on the fly. The gap is further reduced when fea-
ture reconstruction is used instead of pixel reconstruction,
demonstrating the impact of using CLIP feature projections
over raw pixels, even for such unnatural data. Overall, our
proposed synthetic object motions can act as a strong super-
visory signal in a standalone to learn video representations
with masked video modeling. We leave the scaling of such
learning without natural videos for larger models to future
works.

E. Additional Experiments
E.1. Performance with fixed training budget

We now compare our method with VideoMAE [43] base-
line for different dataset scales with a fixed training bud-
get, i.e. total number of training iterations n = s X e,
where s is the dataset size and e is the number of epochs.
Using the ViT-S backbone, we pretrain on four subsets of
K400, namely, 12.5%, 25%, 50%, and 100% of the full
scale. For the whole dataset s = 100%, we pretrain for
200 epochs; smaller subsets are trained for proportionally
more epochs i.e., s = 50% for 400 epochs, s = 25% for
800, and s = 12.5% for 1600. Results in Figure 1 show

Table 5. Learning video representations with only object mo-
tions. We train VideoMAE baseline on Kinetics-400 videos and
ours with augmented clips generated by overlaying noise images
with object motions. All settings train a ViT-S for 400 and ViT-B
for 600 epochs. Our method trained without any natural videos
lags only by a small margin compared to the VideoMAE baseline
trained with natural videos from the Kinetics-400 dataset.

Method Data Target K400 SSv2 GYM
ViT-S
No Pretrain. - - 65.7 522 55.1

Ours Noise + Motion Pixel 72.7 59.1 72.5
Ours Noise + Motion Features 73.7 61.0 74.6

VideoMAE K400 Pixel 759 62.7 75.1
ViT-B
No Pretrain. - - 69.1 49.8 50.0

Ours Noise + Motion Pixel 74.5 60.0 77.2
Ours Noise + Motion Features 77.5 64.1 83.0
VideoMAE K400 Pixel 79.0 67.0 86.6

that our method consistently outperforms the VideoMAE
baseline by a large margin for various data scales under the
same training budget. This highlights the robustness of our
method to dataset size and training duration.

Table 6. Full-Scale ablation. Ablating our main contributions on
a larger backbone and a bigger pretraining dataset, i.e., the origi-
nal K400. Reconstructing features and adding synthetic motions
shows consistent improvements for a larger backbone (ViT-B) and
scaling to a bigger pretraining dataset.

Backbone  Target Synth. K400 SSv2

ViT-B Pixels w/o 783 672
ViT-B Pixels w/ 789 67.7
ViT-B Features  w/o 81.2 70.8
ViT-B Features w/ 81.7 712
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Figure 1. Performance comparison with a fixed training bud-
get. We evaluate on SSv2 and GYM for full finetuning. Our
method consistently outperforms VideoMAE [43] across all data
scales with the same training budget.

E.2. Full-scale ablation

All main paper ablations are conducted with the smaller
K400, pretraining and a ViT-S backbone. To reinforce the
validity of our key contributions—feature target reconstruc-
tion and synthetic object motion, we extend the ablations
to full-scale K400 pretraining using a larger ViT-B back-
bone. Full finetuning is performed on the complete K400
and SSv2 datasets. We adopt the best configurations from
the small-scale ablations, including 80% masking, trajec-
tory masking, two object overlays, CLIP feature reconstruc-
tion, and a 300-epoch training schedule unless stated other-
wise.

Table 6 presents the results for full-scale ablations. Con-
sistent with the small-scale ablations in the main paper, in-
corporating synthetic motions boosts downstream perfor-
mance. Specifically, our feature reconstruction improves
the downstream performance by 2.9% on K400 and 3.6% on
SSv2 over pixel reconstruction. By adding object motions,
pixel reconstruction improves by 0.6% on K400 and 0.5%
on SSv2, and feature reconstruction sees gains of 0.5% on
K400 and 0.4% on SSv2. Our best configuration—feature
reconstruction with synthetic motion—achieves the high-
est performance, reinforcing the robustness and scalabil-
ity of our method across larger backbones and pretraining
datasets.

E.3. Qualitative analysis

In Figure 2, we extend the qualitative analysis to compare
with more prior video SSL works. As before, we observe
that the features of different frames have larger differences
for our model, indicating better temporal awareness. In
particular, our feature similarity is consistent with moth
motion-aware methods like MGM, MGMAE and MME
demonstrating the motion focus of our method too.

SMILE(Ours)

Figure 2. Feature similarity across different frames for differ-
ent SSL methods. We compute this on K400 validation videos.

F. Experimental Details
F.1. Datasets for main results

For linear probing and full finetuning SoTA experiments,
we evaluate action recognition task with standard action
recognition datasets i.e. Kinetics-400 [18] (K400), Some-
thingSomething V2 [12] (SSv2), UCF-101 [39] (UCF),
HMDB-51 [19] (HMDB), FineGYM [37] (GYM), and
EPIC-Kitchens-100 [6] (EPIC). More details about the
datasets are in Table 8 and following:

Kinetics-400 [18] Kinetics-400 (K400) is a comprehensive
benchmark designed for video action recognition tasks. It
consists of over 306,000 concise video clips sourced from
YouTube, spanning an impressive 400 distinct action cat-
egories. As one of the largest and most widely adopted
datasets in this field, K400 plays a pivotal role in assess-
ing and advancing cutting-edge models for understanding
actions in video content.

SomethingSomething V2 [12] SomethingSomething V2
(SSv2) is a collaboratively sourced dataset consisting of
first-person video recordings, specifically crafted to facili-
tate the development of common-sense reasoning capabil-
ities. In terms of visual composition and perspective, it
markedly diverges from Kinetics-400. The dataset com-
prises 168,913 training samples and 24,777 testing samples,
distributed across 174 unique action categories.

UCF-101 [39] UCF-101 is a widely recognized bench-
mark in video self-supervised learning research. It com-
prises a diverse set of 9537 training and 3783 testing sam-
ples, sourced from YouTube videos grouped into 101 ac-
tion categories, characterized by coarse granularity. Many
of these categories show a substantial overlap with the ac-
tion types included in Kinetics-400.

HMDB-51 [19] HMDB-51 (HMDB) is a widely-used
benchmark for action recognition research. It features a to-
tal of 6,766 video clips, carefully selected from a variety of
sources, such as films, the Prelinger Archive, YouTube, and
Google Videos. The dataset is categorized into 51 unique
action classes, with each class comprising no fewer than



Table 7. SEVERE benchmark. Details of all the experimental subsets in the benchmark. We follow the configurations from the original

work [42].
Evaluation Setup  Experiment Dataset Task #Classes #Finetuning #Testing Eval Metric
Gym99 FineGym [37] Action Class. 99 20,484 8,521 Top-1 Acc.
Sample Efficienc UCF (10%) UCF 101 [39] Action Class. 101 1,000 3,783 Top-1 Acc.
P y Gym (10% FineGym [37] Action Class. 99 1,000 8,521 Top-1 Acc.
Action Granularit FX-S1 FineGym [37] Action Class. 11 1,882 777 Mean-per-class
Y uB-si FineGym [37] Action Class. 15 3,511 1,471 Mean-per-class
Task Shift UCF-RC UCFRep [54] Repetition Counting - 421 105 Mean Error
Charades Charades [38] Multi-label Class. 157 7,985 1,863 mAP

Table 8. Datasets. Details of the datasets used for evaluation
showing the corresponding number of classes, training, and testing
samples for each.

Dataset  #Classes #Train  #Test
K400 400 240K 19K

UCF 101 9.5K 3.8K
HMDB 51 4.8K 2K

SSv2 174 169K  24.8K
GYM 99 20.5K 8.5K
EPIC 97 672K 9.7K

100 video samples.

FineGYM [37] FineGYM (GYM) is a benchmark de-
signed for fine-grained action analysis in gymnastics com-
petitions. For our study, we specifically select the Gym-99
subset, which consists of 99 unique action categories. This
subset provides 20,484 training samples and 8,521 testing
samples.

EPIC-Kitchens-100 [6] EPIC-Kitchens-100 (EPIC) is a
large egocentric dataset capturing daily kitchen activities,
annotated with 97 verbs and 300 nouns, where actions are
defined as combinations of both. Similar to SS-v2, EK-100
differs significantly from Kinetics-400 in its unique visual
style and first-person perspective. Using the standard splits
provided in [13], it includes 67,217 training samples and
9,668 for validation, with our study focusing solely on rec-
ognizing the 97 verb classes.

F.2. Datasets for SEVERE Benchmark

SEVERE Benchmark[42] SEVERE-Benchmark spans
eight experimental settings across four datasets i.e.
Something-Something V2, UCF, FineGYM, and Cha-
rades [38]. Table 7 provides detailed configurations for each
subset.

F.3. Training and Evaluation Details

Pretraining details.
(K400) [

We pretrain on Kinetics-400
] and Something-Something V2 (SSv2) [12]

Table 9. Linear-Evaluation setting.

config K400 UCF HMDB SSv2 GYM EPIC
optimizer AdamW/[26]

base learning rate l.e-3

weight decay 0.05

optimizer momentum B1, B2 = 0.9,0.999

layer-wise Ir decay [ 1] 0.75

batch size 128

learning rate schedule cosine decay

training epochs 30 100 100 50 100 100
flip augmentation yes  yes yes no yes  yes

Table 10. Full finetuning evaluation setup.

config SSv2 K400 SEVERE
optimizer AdamW

base learning rate 1.0e-3

weight decay 0.05

optimizer momentum B1, B2 = 0.9,0.999
layer-wise Ir decay[ 1] 0.75

batch size 32 16 16
learning rate schedule cosine decay
warmup epochs 5

training epochs 40 100 100
flip augmentation no yes yes
RandAug [5] 9,0.5)

label smoothing[41] 0.1

mixup [53] 0.8

cutmix [51] 1.0

drop path 0.1

datasets. To generate our segmented object set O, we fol-
low [7] to utilize Stable Diffusion [34] and X-paste [56],
generating 60 samples for each of the 1203 categories in
the LVIS dataset [13]. Following VideoMAE [43] we use a
temporal stride of 2 for SSv2 and a stride of 4 for K400.
Each clip contains 16 frames sampled at a resolution of
224 x 224 pixels. Space-time tube embeddings are extracted
using a 3D convolution layer, treating each 2 x 16 x 16
cube as a token. We use both tube and trajectory mask-



Table 11. Pretraining details.

config SSv2 K400
optimizer AdamW
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum | [, 82 = 0.9,0.95
batch size 256
learning rate schedule cosine decay
warmup epochs 40

flip augmentation no yes
augmentation MultiScaleCrop
Epochs 800 600

ing with a ratio m = 80%. We employ multiple sampling
based on [15] during the pretraining which effectively sam-
ples two input clips from the same video for reconstruc-
tion. This decreases the training time by almost half without
any performance drop. We always count epochs as “effec-
tive epochs = No. of epochs X No. of samples per video”,
i.e., how many times each video is sampled and processed
throughout training. We employ our progressive pretrain-
ing strategy for 600 epochs on K400 and 800 on SSv2,
300 and 400 in each stage, respectively. Table 11 shows
the rest of the configuration. We train our models with 8
NVIDIA V100 GPUs. For downstream evaluation, we only
use the student network without its decoder and attach a
task-dependent head to the pretrained student encoder e.g.,
a classification layer for action recognition.

Linear Probing details. Table 9 shows the settings for lin-
ear probing. We use 4 NVIDIA V100 GPUs for linear prob-
ing.

Full Finetuning details. Table 10 shows the settings for
full finetuning, following [43]. We use 4 NVIDIA V100
GPUS for fine-tuning.

SEVERE Benchmark evaluation. We compare our
method to recent masked video modeling approaches, using
the SEVERE codebase [42] and keeping identical training
and evaluation setups for fair comparison. Official models
for each comparative method are used.
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