
Activating Sparse Part Concepts for 3D Class Incremental Learning

Supplementary Material

Table 1. Results on different sizes of the exemplar set.

500 1000 1500
Last Avg Last Avg Last Avg

iCaRL 53.70 63.94 61.03 69.36 65.24 72.50
DER 65.13 73.67 69.75 76.72 72.63 78.19
MEMO 61.89 70.55 70.27 77.12 72.17 77.58
Ours 74.48 81.79 81.18 86.37 81.64 86.45

1. Hyperparameters Analysis

Our method contains several important hyperparameters,
such as the number of part concepts per class Nc, the num-
ber of neighbor points in each part K, the number of part
sets per shape Nq , and the size of the exemplar set. We
show how different choices of these parameters can affect
the performance in Fig. 1.

In Fig. 1 (a), we conduct experiments on different num-
bers of part concepts M for each class, where M = Nc ∗C.
When Nc < 3, the performance is poor, suggesting that
a limited number of part concepts struggle to represent all
part patterns effectively. Conversely, performance dimin-
ishes as Nc > 6, possibly due to the increased difficulty in
optimizing a surplus of part concepts.

As shown in Fig. 1 (b), the size of each overlapped part
is determined by the number of points it contains, conse-
quently impacting its generalization capabilities. In partic-
ular, it is hard for small parts to represent discriminative
local geometric patterns. In our experiments, our approach
achieves the best results when K = 64.

Since we use FPS to sample seeds for part points group-
ing, a few parts may result in inconsistent part composite
features for the same class. As shown in Fig. 1 (c), the re-
sults decrease continuously when Nq < 256. Our method
achieves the best performance when Nq = 256.

As depicted in Table 1, we report comparison experi-
ments when using different sizes of the exemplar set Et.
We can observe that our model outperforms all compari-
son baselines whether we use a large or small exemplar set.
Furthermore, our method converges to a stable performance
when the size of the exemplar set is greater than 1000. For
other methods, we can still observe performance improve-
ments when increasing the exemplar set from 1000 to 1500.
A potential reason is that other methods are sensitive to
the exemplar set size. This demonstrates the effectiveness
of our model when addressing the catastrophic forgetting
problem for 3D objects.

Table 2. Results on different few-shot settings.

1-shot 5-shot
Last Avg Last Avg

iCaRL 3.46 48.82 8.66 19.80
DER 58.55 71.01 59.35 71.90
MEMO 63.22 72.95 53.12 68.87
Ours 69.98 78.40 74.36 82.80

2. More analysis
Activated Part Concepts. We highlight the part concept
activations in Fig. 2 as learned part concepts according to
their similarity w.r.t. point features. We can see that part
concepts can activate similar semantic parts of shapes of
different classes, such as backs, planes, legs, and screens.
This confirms that part concepts can effectively generalize
knowledge learned from different classes among different
tasks and represent shapes as the composition of part con-
cepts.

Few-shot Settings. We report the results for different
few-shot settings in Tab. 2. The size of the exemplar set
for each class is set as 1. We observe that our method out-
performs other methods under different few-shot settings. It
confirms the plasticity of our model to alleviate catastrophic
forgetting.

Time and Network Parameters We calculate com-
putation time and network parameters using an NVIDIA
Tesla V100 GPU with 32GB memory and an Intel Xeon
@2.80GHz CPU with 32 cores. Computation time is mea-
sured as the average time of each batch run on Co3D with
a batch size of 40 and point clouds with 1024 points. Our
method only requires about 8.55M parameters, and each run
takes about 0.19s.

Implementation Details. In all experiments, we adopt
PointNet as the backbone to extract point-wise features of
point clouds sampled 1024 points, therefore L = 1024. The
Adam optimizer optimizes the network with an initial learn-
ing rate of 0.001 and a weight decay of 0.0005. In our ex-
periments, we train the initial task with a batch size of 40
for 200 epochs and the following tasks with the same batch
size for 150 epochs. We specify the dimensions of the fea-
tures and the number of part concepts to 256. The overall
method is implemented via PyTorch, and we conduct all
experiments on a computer with an NVIDIA Tesla V100
GPU.



70

74

78

82

86

90

1 3 5 7 9

Last Acc Avg Acc

70

74

78

82

86

90

8 16 32 64 128 256

Last Acc Avg Acc

70

74

78

82

86

90

32 64 128 256 512

Last Acc Avg Acc

(a) Part concepts (b) Points in each part (c) Split parts

Figure 1. Evaluation of hyperparameters on (a) the number of part concepts for each class, (b) the number of points in each part, and (c)
the number of parts for each shape.

Chair Sofa Bed

Chair Table Bench

Table Bench

Monitor Laptop

Importance

Figure 2. Visualization of different part concepts and their corresponding activations on different shapes.


	Hyperparameters Analysis
	More analysis

