DTOS: Dynamic Time Object Sensing with Large Multimodal Model

Supplementary Material

A. Implementation Details

A.l. Training details

We report the training hyperparameters for TCS and TCD in
Tab. Al. All models were trained on 4x40GB A100 GPUs,
employing the ZeRO-2 optimization from DeepSpeed [13]
to further reduce memory consumption. During training,
we fully froze the embedding layer of the LLM and replaced
the newly added tokens with learnable parameters. In the
inference phase, these learnable parameters were directly
mapped to the extended embedding layer. Training TCS
took approximately 50 hours, and training TCD required
around 62 hours. Both TCS and TCD have approximately
9 billion parameters, with around 0.7 billion being trainable
about 8% of the total parameter count.

We adopt VILA1.5-L1aMA3-8B [11] as the base model,
and it is equipped with an understanding of multi-image
sequences after being pretrained on multiple images. We
leverage the world knowledge encoded in MLLM’s pretrain-
ing and the localization capabilities obtained through fine-
tuning to achieve unified spatiotemporal object localization.
Thanks to the model’s zero-shot capability, even with lim-
ited overlap in scene and target words between the MR and
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Figure Al. Insert frame schematics (top) and fragment sampling
details (bottom).

Hyperparameter TCS TCD
Batch size 1 1
Epochs 8 8
Learning rate Se-5 3e-5
Learning rate warmup steps 0.03 0.03
Optimizer AdamW AdamW
Weight decay le-4 le-4
Gradient accumulation step 1 1
Input frames 20 7
LoRA rank 64 64
ﬂ?zou’ AL Vaver 1,31 3.9.1
AgioU, AL1, Alabel - 0.5,0.5, 10
Special token num 10 7

Table Al. Training Hyperparameters for DTOS. A" A" and

gloU’ "1
/l;'; pe; Are the weights for gloU loss, L1 loss and label loss of TCS.
AgloU,> A1 and Ajqpe; are the weights for gloU loss, L1 loss and

label loss of TCD.

RVOS datasets, we still achieve strong results, demonstrat-
ing the excellent generalization ability of MLLM.

A.2. Pipline details

Negative Response We considered scenarios where the
target may be absent from the frame due to occlusion or
camera movement, as well as cases of target loss caused by
sampling errors in our TCS. In such situations, it becomes
essential for the system to generate a Negative Response
to handle the absence of the target. Unlike SAM?2, which
trains a separate discriminator to detect target presence, we
incorporate negative sample response templates directly into
the training process in the Fig.3 (bottom), leveraging the
MLLM’s inherent visual-text understanding to make these
determinations. For instance, In Fig. C3 (h) , the input
prompt “people standing” fails to match the content of the
sampled clip due to TCS error, where “people” are absent.
Our TCD detects this and responds “No match for the target”,
refraining from segmentation. This method also helps to
reduce hallucinations in the model’s responses.

Duplicate Interpolation During video sampling, errors in
keyframe extraction or insufficient video length often result
in fewer sampled frames than required. To address this, we
use duplicate interpolation to fill in the missing frames, as
shown in Fig. Al (top). For example, if 3 frames (1, 2,
and 3) are sampled from the video and need to be expanded
to 10 frames, we distribute the sampled frames evenly as
anchor frames, using “0” for padding. We then compute the



TCS Prompt

You are a video location assistant. Your task name is Moment Retrieval. Your need to find the snippets of video that
are most relevant to the query semantic information and return them in the format of the example below.

(1) You will receive a 90 frame video with rough information which arranges in a grid view, and 10 frame details
at 0/10/20/30/40/50/60/70/80/90, and you need to correlate the two information.

(2) Then I will give you a description sentence about this video, which is relevant to particular segments.

(3) Please also note that each query may appear at any position in the video, and each query may correspond to
multiple non-overlapping fragments. You need to locate the corresponding fragments of each query and generate one
or more results.

(4) Please do not copy the content and answers in the examples.

=== EXAMPLES ===

[user]: (image message) (video message) (image message) (video message)... Can you locate these descriptions in
the video? the dog ...

[system]: Considered, I would pinpoint ten video moments as: <reg>...<reg> My analysis yields detailed answers
above.

=== END ===

If you understand, Please begin to answer the following questions.

TCD Prompt

You are a video segmentation assistant. Your task name is Refferring Video Object Segmentation. Your need to find
the objects that are most relevant to the query semantic information and return them in the format of the example below.

(1) You will receive key frames of the most relevant video clips, but you still need to find the best match among
them.

(2) Then I will give you a description sentence about this video, which is relevant to particular objects.

(3) Please also note that each query may appear at any position in these images, and each query may correspond to
multiple objects. You need to locate the corresponding objects of each query and generate one or more results.

(4) Please do not copy the content and answers in the examples.

=== EXAMPLES ===
[user]: (image message) (image message)... Could you identify the locations depicted in <tgt_i >image? the men

[system]: Sure! The image shows the following locations: <seg>...<seg> These are the places depicted.

If you understand, Please begin to answer the following questions.

Figure A2. TCS and TCD prompts. The bolded parts are the introduction to the task, the objectives to be achieved, and the questions about
the specific functionality to be implemented. The text in blue represents different special tokens that the MLLM needs to respond to.

midpoints between anchor frames to define intervals, and
duplicate frames within each interval to match the anchor
frames.

Sampling of Clip Length Proportions As shown in
Fig. Al (bottom), we apply this sampling method when

the sampled clip consists of multiple frames. In this case,
we first calculate the proportion of each clip relative to the
total frame count of the TCD and then allocate the number
of sampled frames based on this proportion. For example, if
6 frames are sampled in total and the length ratio of the two
clips is 1:2, we would allocate 2 frames from the first clip



Data ActivityNet Captions [9] QVHighlights [10] val
Augmentation | R1@0.3 R1@0.5 R1@0.7 mloU R1@03 R1@0.5 R1@0.7 mloU

None 55.56 34.32 17.91 37.63  69.78 43.88 24.16  46.05

Aug 60.96 43.27 25.16  42.77 8245 68 44.84 60.14

Table B2. Comparison of TCS with and without data augmentation on ActivityNet Captions [9] and QVHighlights [10] val. Aug denotes

using data augmentation by referring MixGen [4].

Method R1@3 R1@.5 R1@.7 mloU
VLG-Net [18] - 33.35 25.57 -
CONQUER [7] - 38.17 29.9 -

EventFormer [5] - 39.02 30.91 -

PREM [6] - 40.79 33.77 -

T-CKCN [2] - 4183 345 -
DTOS-TCS 72.5 62.01 48.36 57.31

Table B3. Comparison on the DiDeMo [1] Dataset.

Frames | R1@.3 R1@.5 R1@.7 mloU
15 78.71 67.47 42.04  56.11
20 79.62 67.58 42.12 56.45
25 73.39 56.56 30.73  49.35

Table B4. Ablation study of visual token length on Charades-STA
[17]. The numbers in the table are expressed in terms of the token
length of one image as the unit of measurement.

and 4 frames from the second clip, ensuring the sampling
distribution reflects the relative length of each clip.

Optimal Frame Sampling Strategy We devised a sam-
pling strategy to select optimal frames from all the predicted
clip results in the TCD. In each frame’s target detection re-
sults, we use the NMS method [12] to eliminate duplicate
bounding boxes and filter out outliers based on an iou thresh-
old (set at 0.6). We then count the remaining bounding boxes
across all sampled frames, selecting the frame with the most
common box count as the final target frame. After NMS
and outlier detection, numerous candidate frames emerge.
Our selection strategy computes the IoU between bounding
boxes in each frame, sums IoU values. Low IoU means more
dispersed targets. Since dispersion worsens false-tracking
in video, so more overlap is better. The All Mode Frames
strategy is the only method that can generate multiple opti-
mal frames. It will not be filtered out but will all be sent to
SAM?2 for independent propagation.

Prompt details In Sec. A.2, we designed distinct prompts
for both TCS and TCD. In these prompts, we begin by clearly
specifying the task requirements, followed by a detailed de-
scription of the inputs. We also provide explicit guidance
to the MLLM by highlighting key steps or cognitive pro-

Sampling Strategy | T F  IJ&F
Topl Frame 62.81 706 66.71
Random Frame 66.72 74775 70.74
Middle Frame 69.38 78.11 73.74
All Mode Frames | 65.43 73.64 69.54
Optimal Frame 70.76 79 74.88

Table B5. Ablation study of TCD sampling strategy for optimal
frames on Ref- DAVIS-17 [8]. Topl Frame means the frame with
the highest prediction score among all frames and is selected as
the optimal frame. Random Frame means selecting a frame at
random to be the optimal frame. Middle Frame means choosing
the frame located at the center of the segment as the optimal frame.
All Mode Frames involves selecting all frames that have the most
frequent prediction score as the optimal frames, which is the only
frame selection strategy that can result in multiple optimal frames.
Optimal Frame is the our method, which is detailed in the paper.

n_frame J F J&F
5 63.01 68.06 65.53
7 66.29 70.75 68.52
9 55.61 60.53 58.07

Table B6. Ablation study of the total number of input frames on
the Ref-YouTube-VOS [16]. n_frame denotes the total number of
frames in the clip provided to TCD. The 9-frame is tested using
4x80G A100 GPUs.

Methods Task Dataset Train  Infer TFLOPs  Score

VISA TFS 2d 5.17s 17.61 493
HawkEye MR 2108k 7d
DTOS-TCS 90k 2d 4.96s 78.59 58
VISA-7B RVOS 1343k 35d  0.6ls 26.06 435
DTOS-9B 36k 2.6d  8.55s 332.82 48.86

Table B7. VISA [60] was trained on 171k video and 1172k image
samples with 8 A100 80G GPUs. HawkEye [52] was trained with
8 V100 32G GPUs. Both VISA and HawkEye datasets have much
instruction-tuning data. Scores are mloU on Charades-STA [49]
and I &F on MeViS [8].

Special Ref-DAVIST7 Ref-YT-VOS
Tokens | J ¥ J&F g F  J&F
4 69.86 7751 73.68 62.89 6742 65.15
7 69.22 7736 7329 66.86 7121  69.03
Table BS. Ablation Study of One-to-Many Design on Ref-
DAVIS17 [19] val and Ref-YT-VOS [438].




cesses to consider. Furthermore, we impose constraints on
the response format to effectively leverage the multimodal
knowledge encoded within the MLLM. Lastly, we include
an example to illustrate the process that the model should
follow.

B. More Experiments

B.1. More Comparison Experiments

The DiDeMo [1] dataset is primarily used for Video Re-
trieval tasks, with limited reports on its performance in the
sub-task of Single Video Moment Retrieval (SVMR). We
have gathered relevant scores from previous studies as com-
prehensively as possible. In Tab. B3, our TCS has achieved
state-of-the-art results, improving the R1@0.7 scores by
+13.86 compared to prior methods.

B.2. More Ablation Experiments

Visual Token Length In Tab. B4, we first estimate the
optimal length for image and video tokens as inputs to the
model, with the best performance achieved at around 20
frames. We hypothesize that this result correlates with the
input length used during pretraining of the MLLM. Fewer
visual tokens fail to provide adequate information, while an
excessive number of visual tokens often diverges from the
pretrained visual token length, potentially degrading perfor-
mance.

Data Augmentation Tab. B2 shows a comparison of per-
formance before and after data augmentation. We observe
that data augmentation not only enables one-to-many de-
tection capabilities but also enhances textual complexity in
the augmented data. This yields notable improvements in
datasets with longer texts (e.g. ActivityNet Captions [9]) or
multiple bounding boxes (e.g. QVHighlights [10]). DTOS
performs better with less task-specific data. We compared
HawkEye and VISA on different tasks, which fine-tuned the
joint dataset. Comparison results are in Tab. B7. To deal
with the multi-referential data bias, we used MixGen for data
augmentation. We recorded all queries in one video, then
concatenated, split or repeated their labels. For instance,
we made ‘dog, cat’ from ‘dog’ and ‘cat’ with a comma,
split long text queries, or repeated a query’s label to create
multi-referential labels. The effects are discussed in Tab. B2.
We used DeepSpeed FlopsProfiler to test inference time and
FLOPs on part of MeViS. In almost same time, DTOS gives
precise segment info. When segmenting full-video masks,
DTOS is slower as it queries multiple frames. Its 1.22s/it
per-frame time is close to VISA, but gives better results.

Sampling Strategy of the Optimal Frame In Tab. B5,
our sampling strategy for optimal frame outperforms meth-
ods that rely on middle frames, random frames, or frames

with the highest bounding box scores. Additionally, we
compared the method of selecting multiple optimal frames
with the single-frame optimal approach. The results show
that the single-frame method outperforms the multi-frame
approach, potentially because the TCD’s performance has
not yet reached an ideal level. Introducing multiple frames
may introduce noise, negatively affecting the model’s per-
formance.

Input Frames of TCD As shown in Tab. B6, the model
achieves optimal performance when input 7 frames. Fewer
frames provide limited video information, while longer clips
tend to enhance robustness. However, Excessively long
clips introduce temporal redundancy, making it more dif-
ficult for the model to distinguish between frames. This
redundancy can also dilute the model’s focus and negatively
impact its performance. Additionally, longer clips consume
more memory and prolong training time. We anticipate that
advancements in technology will gradually address limita-
tions related to context length and memory consumption.

Multiple Special Tokens In autoregressive model re-
search, their usage and properties are underexplored. Our
special tokens have task-assigned and text-inherent seman-
tic meanings, avoiding numerical-value issues. [15, 19]
built data-driven benchmarks for multi-reference targets,
but data biases limited them. Our approach enables the
model to proactively generate multiple tokens instead of self-
determining the number of targets. Our method improves
MLLMs’ instruction-following, eases answer construction,
and boosts performance Tab. BS. We added one-to-many
ablation studies on other datasets. As Tab. B8 shows, this
design boosts performance. Finding multiple spatiotempo-
ral targets is much harder than querying one. Multiple query
responses make the model recall past info when generating
each special token. This creates stronger supervision than
single, greatly improving the capabilities.

C. More Visualizations of DTOS

In this section, we present additional DTOS results for qual-
itative analysis, highlighting areas that can be improved in
future research.

In Fig. C3, we present additional visual results that high-
lighting the powerful text understanding and localization
capabilities of DTOS. In the successful cases, the model ac-
curately identifies the objects referenced by the user’s query
and can even localize small targets that appear over a long
duration (e.g. Fig. C3 (b)). It also makes precise predic-
tions based on static information (e.g. “yellow” in Fig. C3
(c)) and dynamic information (e.g. “descended” in Fig. C3
(d)). In the failure cases, Fig. C3 (h) illustrates a failure
where “people” is mistakenly detected, resulting in a failure
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Figure C3. We provide more visual results on the MeViS [3] validation set. In the figures, the blue mask represents the ground truth, while
the orange mask shows our predicted results. The green circles highlight the ground truth. The dashed boxes represent the predicted time
segments from our TCS, with green indicating correct predictions and red indicating incorrect predictions where no target is detected.

in localization. However, our approach of using negative
samples helps reduce hallucinations in incorrect segments
and prevents the model from mislocalizing other objects,
thus preventing the amplification of errors.
From these cases, several promising directions for future
research arise:
* Maintaining independent information for each target as a
basis for propagation and determination across frames.
* Enhancing localization accuracy to better capture the
spatial-temporal characteristics of targets.
* Strengthening the model’s understanding to handle more
complex expressions and behaviors.

D. License

Our code and models will be publicly available under stan-
dard community licenses. Here are the links to the datasets,
code, and models referenced in this paper:

MeViS[3]: MIT
Ref-YouTube-VOS[16]: CC BY 4.0
Ref-DAVIS17[8]: BSD 3-Clause
Charades-STA[17]: Non-Commercial
DiDeMo[1]: BSD 2-Clause
Activity-Captions[9]: MIT
QVHighlights[10]: CC BY-NC-SA 4.0
VILA[11]: Apache

SAMZ2[14]: Apache
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