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Figure 1. PSNR comparison with state-of-the-art all-in-one and
task-specific methods. * denotes results obtained under All-in-
One (five tasks) training setting, while unmarked results are from
All-in-One (three tasks) training setting.

As shown in Fig. 1, our proposed DFPIR surpasses
state-of-the-art general restoration methods in the All-in-
One training setup, demonstrating superior performance.
The three-task results for IDR [23] and the five-task results
for PromptIR [13] are referenced from Perceive-IR [26].

1. Datasets

In our experiments, we closely follow prior works [9, 13]
and evaluate our method using eight benchmark datasets:
BSD400 [1], CBSD68 [11], WED [10], and Urban100 [6]
for image denoising; Rain100L [20] for deraining; RESIDE
[8] for dehazing; GoPro [12] for motion deblurring; and
LOL [18] for low-light enhancement. Specifically, BSD400
consists of 400 clean natural images, while CBSD68 con-
tains 68 images. WED includes 4,744 natural images, and
Urban100 comprises 100 clean images. For image de-
noising, we combine BSD400 and WED for training, and
CBSD68 and Urban100 for testing. Following [9, 13], noisy
images are generated by adding white Gaussian noise to the
clean images at three corruption levels: σ = 15, 25, 50.
For image deraining, we use the Rain100L dataset, which
contains 200 rainy-clean image pairs for training and 100
pairs for testing. In the case of image dehazing, we use
the RESIDE dataset, which includes the Outdoor Training
Set (OTS) with 72,135 hazy-clean pairs for training, and
the Synthetic Objective Testing Set (SOTS) with 500 hazy-
clean pairs for testing. We utilize the GoPro dataset for mo-

tion deblurring, which includes 2,103 images for training
and 1,111 images for testing. Lastly, for low-light enhance-
ment, we adopt the LOL-v1 dataset [18], using its official
split of 485 training images and 15 testing images.

2. Degradation Type Prompt Generation
The role of the degradation type prompts is to guide the
perturbation of the feature space. What we focus on is the
degradation type, not the specific image details. For exam-
ple, we aim to differentiate between rain degradation and
hazy degradation, rather than the extent or location of rain
or haze in the image. To simplify network training, we
use the pre-trained language model CLIP [15] to encode
text descriptions of the degradation types, thereby obtain-
ing the degradation type prompts. We describe Gaussian
noise with a standard deviation of 15 as “Gaussian noise
with a standard deviation of 15”. For rain degradation, we
use “Rain degradation with rain lines”. Hazy degradation is
described as “Hazy degradation with normal haze”. Motion
blur degradation is represented as “Blur degradation with
motion blur”. Finally, low-light degradation is referred to
simply as “Lowlight degradation”. This detailed descrip-
tion is sufficient to distinguish the degradation types of im-
ages in multitasking. The CLIP model can embed them
into a common representation space: Pe = fCLIP (dn),
where dn represents degradation prompts. It is important
to note that the degradation types mentioned above do not
necessarily require detailed descriptions. Instead, they can
be represented using simple degradation prompts, such as
“Noise” for degradation levels with σ values of 15, 25, and
50, “Rain” for rainy conditions, and “Haze” for hazy con-
ditions. We utilize detailed descriptions to fully leverage
the flexibility of CLIP [15], enabling the model to handle
complex or future mixed degradation scenarios for further
research. In the supplementary ablation studies, we pro-
vide experimental results using these simplified degradation
type descriptions (see Tab. 6). Experimental results indicate
that there is only a minimal difference between using simple
degradation descriptions and detailed ones.

3. Comparisons on Single-Task
Our primary goal is to design a powerful multi-task im-
age restoration model, as single-task scenarios with spe-
cific degradation types fail to adequately demonstrate the
effectiveness of our proposed feature perturbation method
in mitigating the effects of multiple degradations. Neverthe-
less, we compare DFPIR with single-task methods. Since
InstructIR [3] does not provide single-task results, we pri-



Table 1. Dehazing results in the single-task setting on the SOTS benchmark dataset [8]. Compared to PromptIR [13], our method generates
a 0.69 dB PSNR improvement. PSNR (dB, ↑) and SSIM (↑) metrics are reported on the full RGB images.

Method DehazeNet [2] MSCNN [16] EPDN [14] FDGAN [4] AirNet [9] Restormer [22] PromptIR [13] DFPIR(Ours)

PSNR 22.46 22.06 22.57 23.15 23.18 30.87 31.31 32.00
SSIM 0.851 0.908 0.863 0.921 0.900 0.969 0.973 0.981

Table 2. Deraining results in the single-task setting on Rain100L [20]. Our DFPIR obtains a significant performance boost of 2.04 dB
PSNR over PromptIR [13]. PSNR (dB, ↑) and SSIM (↑) metrics are reported on the full RGB images.

Method UMR [21] SIRR[19] MSPFN [7] LPNet [5] AirNet [9] Restormer [22] PromptIR [13] DFPIR(Ours)

PSNR 32.39 32.37 33.50 33.61 34.90 36.74 37.04 39.08
SSIM 0.921 0.926 0.948 0.958 0.977 0.978 0.979 0.984

marily focus on comparisons with PromptIR [13]. This
is to show that under the single-task setting, DFPIR re-
mains effective for images with varying degrees of degra-
dation within the same degradation type. We compare DF-
PIR against various general image restoration methods (De-
hazeNet [2], MSCNN [16], EPDN [14],FDGAN [4], AirNet
[9], Restormer [22] and PromptIR [13]) for dehazing. Tab.
1 reports dehazing results. Compared to the previous ap-
proaches PromptIR [13] and AirNet [9], our method obtains
PSNR gains of 0.69 dB and 1.13 dB, respectively. Simi-
larly, on the deraining task, our DFPIR surpasses the state-
of-the-art [13] by 2.04 dB, as indicated in Tab. 2. The main
methods compared are UMR [21], SIRR [19], MSPFN [7],
LPNet [5], AirNet [9], Restormer [22] and PromptIR [13]
for deraining. A comparable performance trend is evident
in the image quality scores presented in Tab. 3 for denois-
ing. The denoising methods compared include IRCNN [24],
FFDNet [25], BRDNet [17], AirNet [9], PromptIR [13],etc.
It should be noted that the metrics on the CBSD68 dataset
[11] are on par with PromptIR [13], but on the Urban100
dataset [6], the metrics exceed PromptIR [13] by 0.14 dB
for noise level σ = 50.

4. Ablation Studies

We conduct several ablation experiments to demonstrate the
effectiveness of our proposed degradation-guided perurba-
tion block. We report the results of training an all-in-one
model on combined datasets from three restoration tasks.

Impact of key components. As illustrated in the Tab.
4, using channel attention (Method (a) ) directly improves
by 0.36 dB compared to the baseline [22], but it is 0.15
dB lower than channel shuffle (Method (c) ). This also
validates the effectiveness of the channel shuffle strategy
we proposed. Channel shuffle preserves inherent image
features with degradation info but offers limited reduction
in cross-degradation interference. By applying attention-
wise perturbation, restoration quality is significantly en-
hanced (DGCPM+CAAPM). The average PSNR increases

from 32.49 to 32.88, reflecting an improvement of 0.39 dB.
However, method (b) (CA+CAAPM) results in a lower per-
formance than DFPIR, indicating that the perturbations in
channel and attention dimensions produce a synergistic en-
hancement effect. Furthermore, as observed, the method
using channel attention (CA) (Method (b)) shows limited
ability to mitigate cross-degradation interference, result-
ing in an imbalance in multi-task performance. For in-
stance, while it achieves competitive dehazing results (close
to DFPIR), its denoising and deraining performance is sig-
nificantly lower than that of DFPIR. This further demon-
strates that our proposed channel shuffle strategy is more
effective in reducing the impact of multiple degradations.
We also replaced CAAPM with spatial attention (method
(d)), and the results indicate a significant performance gap
in restoration quality compared to DFPIR. Additionally, it
struggled to achieve a balanced performance across multi-
ple tasks (e.g., achieving higher dehazing metrics but sig-
nificantly lower results in other tasks). This is due to its
limitations in effectively fusing original features and miti-
gating the impact of various degradations. We further val-
idate the experimental results of retaining only CAAPM
(w/o DGCPM, Method(e)). The results indicate that the
absence of degradation-aware channel perturbation leads to
increased interference among multiple tasks, resulting in
significantly lower performance compared to DFPIR. This
further demonstrates the effectiveness of channel-wise per-
turbation in enhancing multi-task restoration performance.

Impact of parameter γ. We conducted ablation exper-
iments on the perturbation factor γ as well, as illustrated
in the Tab. 5. If the perturbation in the attention dimen-
sion is too high (γ = 0.5) or absent (γ = 1.0), the perfor-
mance is not optimal. This is because excessive perturba-
tion, while reducing the interference between images with
different degradations, increases information loss, leading
to suboptimal performance. Similarly, if the perturbation is
too small, the interference between tasks becomes more sig-
nificant, resulting in suboptimal performance as well. After
removing degradation prompts (w/o DGCPM), the absence



Table 3. Denoising comparisons in the single-task setting on CBSD68 [11] and Urban100 datasets [6]. On Urban100 [6] for the noise level
50, DFPIR yields a 0.14 dB gain over PromptIR [13]. PSNR (dB, ↑) and SSIM (↑) metrics are reported on the full RGB images.

Method Denoising on CBSD68 Denoising on Urban100
σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

IRCNN [24] 33.87 / 0.929 31.18 / 0.882 27.88 / 0.790 27.59 / 0.833 31.20 / 0.909 27.70 / 0.840
FFDNet [25] 33.87 / 0.929 31.21 / 0.882 27.96 / 0.789 33.83 / 0.942 31.40 / 0.912 28.05 / 0.848
BRDNet [17] 34.10 / 0.929 31.43 / 0.885 28.16 / 0.794 34.42 / 0.946 31.99 / 0.919 28.56 / 0.858

AirNet [9] 34.14 / 0.936 31.48 / 0.893 28.23 / 0.806 34.40 / 0.949 32.10 / 0.924 28.88 / 0.871
PromptIR [13] 34.34 / 0.938 31.71 / 0.897 28.49 / 0.813 34.77 / 0.952 32.49 / 0.929 29.39 / 0.881
DFPIR(Ours) 34.32 /0.934 31.71 / 0.897 28.49 / 0.814 34.79 / 0.952 32.57 / 0.930 29.53 / 0.883

Table 4. Ablation experiments on the impact of key components in the multi-task restoration setting across three tasks. PSNR (dB, ↑) and
SSIM (↑) metrics are reported on the full RGB images. CA stands for Channel Attention, and SA stands for Spatial Attention.

Method CA DGCPM CAAPM SA
Dehazing Deraining Denoising on CBSD68 dataset

Average
on SOTS on Rain100L σ = 15 σ = 25 σ = 50

Baseline × × × × 30.43 / 0.976 36.55 / 0.975 33.84 / 0.931 31.18 / 0.886 27.90 / 0.790 31.98 / 0.911
(a) ✓ × × × 31.01 / 0.978 37.47 / 0.979 33.94 / 0.933 31.28 / 0.888 27.99 / 0.793 32.34 / 0.914
(b) ✓ × ✓ × 31.86 / 0.979 37.86 / 0.980 34.01 / 0.934 31.37 / 0.890 28.14 / 0.801 32.65 / 0.917
(c) × ✓ × × 31.34 / 0.977 38.42 / 0.983 33.52 / 0.926 31.24 / 0.883 27.95 / 0.783 32.49 / 0.910
(d) × ✓ × ✓ 31.94 / 0.980 37.58 / 0.979 34.11 / 0.935 31.44 / 0.890 28.23 / 0.805 32.66 / 0.918
(e) × × ✓ × 31.17 / 0.979 38.64 / 0.983 33.74 / 0.925 31.31 / 0.887 28.07 / 0.796 32.59 / 0.914

DFPIR(Ours) × ✓ ✓ × 31.87 / 0.980 38.65 / 0.982 34.14 / 0.935 31.47 / 0.893 28.25 / 0.806 32.88 / 0.919

of preceding channel-wise perturbation intensifies inter-task
interference. Therefore, enhancing perturbation in the at-
tention dimension is necessary, with γ = 0.7 achieving
the optimal average PSNR, effectively mitigating interfer-
ence across multiple tasks. Furthermore, it can be observed
that under different perturbation factor γ, the performance
metrics for various tasks either improve or decline simul-
taneously. This further validates that our proposed pertur-
bation method effectively mitigates cross-degradation in-
terference, achieving balanced performance across multiple
tasks.

Model Parameters and Computational Complexity.
In our proposed method, the channel shuffle only involves
simple top-K channel rearrangement and 1×1 convolution
for channel dimension transformation, resulting in a min-
imal increase in the number of parameters. The primary
increase in parameters prompts in the attention dimension
perturbation, specifically through cross-attention. From
the perspective of the overall model’s parameter count and
computational complexity, the additional parameters in our
method, compared to Restormer, are less than 20%, and
the computational cost is less than 8%. Both the parameter
count and computational complexity are smaller than those
of our main reference, PromptIR [13]. For detailed infor-
mation, please refer to the Tab. 7. The use of a pre-trained
CLIP text encoder to encode degradation descriptions and
provide degradation prompts has a certain impact on the
model’s inference time. However, the overall runtime re-
mains relatively fast. Compared to the Baseline (Restormer)

and PromptIR, the inference time only increased by 11.6%
and 5.0%, respectively, for the most time-consuming dehaz-
ing task. Detailed test results are presented on the Tab. 8.

Simple and detailed degradation prompts. We con-
ducted ablation experiments on the prompt content, as
shown in Tab. 6. We replaced the detailed degradation
prompts (Method (dp)) with simple degradation prompts
(Method (sp)), i.e., Noise, Haze, and Rain. The experimen-
tal results show that the overall performance remains nearly
the same, with a slight improvement in dehazing perfor-
mance and a minor decline in denoising performance across
multiple noise levels. Although the performance slightly
decreased across multiple noise levels, this also demon-
strates some degree of generalization. The slight improve-
ment in dehazing performance may be due to the reduced
number of degradation types for the entire network, result-
ing in a minor upward trend in single-task performance.
Overall, the results suggest that the content of the prompts
does not need to be precisely designed; it is sufficient to
provide the network with a degradation-type prompt. By
using pre-trained CLIP [15] text prompts, we cleverly lever-
age the flexibility of text-based prompts, which can help
address the restoration of complex multi-degradation or
mixed-degradation images in future research.

5. Additional Visual Results
We provide additional qualitative results for the multi-
task setting, including deraining, dehazing, and denoising
(three-task setting), as well as deblurring and low-light en-



Table 5. Ablation experiments on the perturbation factor γ in the multi-task restoration setting across three tasks. PSNR (dB, ↑) and SSIM
(↑) metrics are reported on the full RGB images. * denotes w/o DGCPM, retaining only CAAPM.

γ
Dehazing Deraining Denoising on CBSD68 dataset Average
on SOTS on Rain100L σ = 15 σ = 25 σ = 50

0.5 31.65 / 0.979 38.50 / 0.982 33.96 / 0.932 31.39 / 0.890 27.88 / 0.781 32.67 / 0.913
0.7 31.75 / 0.980 38.52 / 0.982 34.11 / 0.935 31.46 / 0.892 28.21 / 0.803 32.81 / 0.919
0.8 31.87 / 0.980 38.53 / 0.982 34.11 / 0.935 31.46 / 0.893 28.23 / 0.804 32.84 / 0.919
0.9 31.87 / 0.980 38.65 / 0.982 34.14 / 0.935 31.47 / 0.893 28.25 / 0.806 32.88 / 0.919
1.0 31.78 / 0.980 38.57 / 0.982 34.11 / 0.935 31.46 / 0.893 28.23 / 0.805 32.83 / 0.919

0.5* 31.17 / 0.979 38.58 / 0.983 33.52 / 0.919 31.16 / 0.880 27.90 / 0.785 32.47 / 0.909
0.7* 31.17 / 0.979 38.64 / 0.983 33.74 / 0.925 31.31 / 0.887 28.07 / 0.796 32.59 / 0.914
0.8* 31.01 / 0.978 38.60 / 0.983 33.70 / 0.924 31.20 / 0.882 28.12 / 0.800 32.53 / 0.913
0.9* 31.11 / 0.979 38.63 / 0.983 33.62 / 0.923 31.13 / 0.879 28.11 / 0.798 32.52 / 0.912
1.0* 30.87 / 0.978 38.60 / 0.983 33.67 / 0.923 31.17 / 0.880 28.13 / 0.799 32.49 / 0.913

Table 6. Ablation experiments in the multi-task restoration setting using simple degradation prompts, i.e., Noise, Rain, and Haze, across
three tasks. PSNR (dB, ↑) and SSIM (↑) metrics are reported on the full RGB images. Method(sp) indicates using simple degradation
prompts, while method(dp) indicates using detailed degradation prompts.

Method
Dehazing Deraining Denoising on CBSD68 dataset

Average
on SOTS on Rain100L σ = 15 σ = 25 σ = 50

(sp) 31.93 / 0.981 38.63 / 0.982 34.12 / 0.935 31.45 / 0.891 28.18 / 0.801 32.86 / 0.918
(dp) 31.87 / 0.980 38.65 / 0.982 34.14 / 0.935 31.47 / 0.893 28.25 / 0.806 32.88 / 0.919

Table 7. The model parameters and computational complexity are
evaluated. GMACS are computed on a 256 × 256 input image
using an NVIDIA RTX 3090 GPU.

Method Params. GMACS
Restormer(Baseline) 26.1M 141.2G

PromptIR 35.6M 158.4G
DFPIR(Ours) 31.1M 151.4G

Table 8. The inference time is measured on a single NVIDIA RTX
3090 GPU. The inference time refers to the total runtime on the
entire dataset.

Method
Dehazing Deraining Denoising on CBSD68 dataset
on SOTS on Rain100L σ = 15 σ = 25 σ = 50

Restormer 155.78s 19.19s 13.07s 12.99s 13.02s
PromptIR 165.52s 20.60s 13.93s 13.97s 13.98s

DFPIR(ours) 173.80s 21.71s 14.84s 14.66s 14.74s

hancement (five-task setting). Visual examples are pre-
sented in Fig. 2 for dehazing, Fig. 3 for deraining, Fig. 4 for
denoising, Fig. 5 for deblurring and Fig. 6 for lowlight en-
hancement. These examples demonstrate the effectiveness
of our DFPIR method in removing degradations and pro-
ducing images that are visually closer to the ground truth
compared to other approaches [3, 13]. Notably, the restored
images from our method exhibit superior structural fidelity

and preserve fine textures more effectively.
We also visualize the features before and after pertur-

bation for multiple degradations in Fig. 7. As shown in
the figure, the features before perturbation clearly contain
severe degradation artifacts, such as noise, rain streaks,
and blur. After the perturbation in the channel dimension
(DGCPM), the degradation features are significantly sup-
pressed, while the inherent features of the image, such as
textures, are enhanced. For example, regarding the fea-
tures of blur degradation, the features after the channel-wise
perturbation (DGCPM) almost achieve a deblurring effect.
This means that the channel-wise perturbation we proposed
can significantly reduce the impact of various degradation
features and robustly extract the inherent features of the im-
age. Although the perturbation in the channel dimension en-
hances the inherent features of the image, it can be observed
that some detail information is lost. However, after the per-
turbation in the attention dimension (DGCPM+CAAPM),
the features not only retain the inherent characteristics of
the image and further suppress the degradation features, but
also enhance the feature details. These results contribute
to the improvement of image restoration quality in the de-
coding stage. Overall, our feature visualization results sup-
port the claims in the “Analysis of Our Feature Perturbation
Strategy” section, showing that the proposed perturbation-
based method preserves the inherent features of the image,
reduces degradation feature interference, and improves im-
age restoration performance in multi-degradation scenarios.
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Figure 2. Image dehazing comparisons on SOTS [8] in the three-degradation setting. The image quality of the results produced by our
DFPIR is visually better than the previous state-of-the-art approach InstructIR [3].
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Figure 3. Image deraining comparisons on Rain100L [20] in the three-degradation setting. Our method effectively removes rain streaks to
generate rain-free images.
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Figure 4. Image denoising comparisons on CBSD68 [11] in the three-degradation setting. The image reproduction quality of our DFPIR is
more visually faithful to the ground truth.

NAFNet

TAPE

Restormer

DGUNet AirNet

MIRNetV2

InstructIR

IDR

GTBlurry Image

DFPIR(Ours)

Figure 5. Image Deblurring Results. Comparison with other methods on the GoPro [12] dataset (GOPR0854-11-00-000001.png).
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Figure 6. Low-light Image Enhancement Results. We compare with other methods on LOL [18].



Pre-perturbationInput DGCPM DGCPM+CAAPM

Figure 7. More feature visualization. Our degradation-aware strategy is capable of extracting the inherent features of images from various
degraded inputs, suppressing degradation-specific features, thereby enhancing restoration performance.
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