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Supplementary Material

1. More Relative Research in Video Diffusion
Models

To extend Diffusion models (DMs) to video generation, the
first video diffusion model (VDM) [11] has been proposed,
which utilizes a spacetime factorized U-Net to model low-
resolution videos in pixel space. Imagen-Video [10] intro-
duces efficient cascaded DMs with v-prediction for produc-
ing high-definition videos. To mitigate training costs, sub-
sequent research [2, 9, 25, 38] has focused on transferring
T2I techniques to text-to-video (T2V) [7, 13, 21, 33], as
well as on developing VDMs in latent or hybrid pixel-latent
spaces. Similar to the addition of controls in text-to-image
(T2I) generation [16, 19, 29, 34], the introduction of con-
trol signals in text-to-video (T2V) generation, such as struc-
ture [6, 26], pose [14, 36] has garnered increasing atten-
tion. Nonetheless, visual image conditions in video diffu-
sion models (VDMs) [22, 30], remain under-explored. Re-
cent works, including Seer [8], VideoComposer [24], have
investigated image conditions for image-to-video synthesis.
However, these approaches either focus on curated domains
like indoor objects [24] or struggle to produce temporally
coherent frames and realistic motions, often failing to pre-
serve visual details of the input image [35]. Recent propri-
etary T2V models [3, 15, 21, 23, 32] show potential for ex-
tending image-to-video synthesis but often lack adherence
to the input image and suffer from unrealistic temporal vari-
ations. In this paper, we focus on the image-conditioned
video generation task.

2. Dataset Selection

We choose WebVid for fair comparison with prior work CIL
[37] and its wide adoption by DynamiCrafter [27], Con-
sisti2v [18], and Motion-i2v [20], due to its uniform resolu-
tion and sufficient size. Other datasets like Panda-70M [5]
have watermarks and blurriness, OpenVid [17] lacks reso-
lution consistency, Vript [28] is too small for effective train-

ing.

3. Generalization of Our Framework.

To demonstrate the generalization, we further perform ex-
periments on SVD [1]. As shown in Table I, our method
also delivers performance improvements on motion degree
and motion control.

Table 1. Applying our method in Stable-Video-Diffusion

Model Video Quality = Motion Degree = Motion Control
SVD 66.38 41.94 20.41
SVD-Ours 67.24 55.16 36.53

4. Model Merging Method

DARE-Pruning [31] DARE employs a parameterized
Bernoulli distribution to sample a sparse mask m?!, which
is then applied to the parameters d and rescaled by the mask
rate p:

m' ~ Bernoulli(p),
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Task-Arithmetic [12] Task-Arithmetic introduces the
concept of “task vectors.” A task vector is obtained by sub-
tracting the weights of a pre-trained model from the weights
of the same model after fine-tuning. Performance on mul-
tiple tasks can be improved by combining vectors from dif-
ferent tasks. Formally, let f,e € R¢ be the weights of a pre-
trained model, and 6}, € R? the weights after fine-tuning
ontask t € {1,...,T}. The task vector 7; € R? is given
by:

Tt = 9112[ - epre ()

We can obtain a multi-task version of the model 6,,, by
summing the task vectors:

T
9m = pre+wZTt (3)
t=1
where w is a hyperparameter.

5. Details of User Study.

For user study, we randomly select input image and prompt
pairs in Vbench and then generate videos by using Ours,
SVD [1] and VideoCrafter [4] with DynamiCrafter[27], CIL
[37] and DC-FT (fine-tuned DynamiCrafter). In the setup,
we conducted pairwise comparisons between our model and
other methods, inviting users to evaluate and select the su-
perior one in terms of quality, consistency, dynamism, and



Prompt: An elephant walking through a forest, camera static.
y @ ) y

1. Please select the video with the best consistent between frames.
Video 1 Video 2

Video 1

Video 2

2. Please select the video with the best change in dynamics.
Video 1 Video 2

3. Please select the video with the best matches the prompt.
Video 1 Video 2

4. Please select the video best quality overall.
Video 1 Video 2

Figure 1. Example of user study questionnaires.

instruction following. We show an illustration of the ques-
tion cases in Figure 1. There are 40 video comparisons,
comprising a total of 160 questions, with the order of the
synthetic videos being shuffled. The survey involved a to-
tal of 200 participants. Following the approach outlined in
[37], we calculated the preference rates, with the results pre-
sented in the main paper.

For camera motion, each command was executed 5 times
on the 8 images, and the average success rate for each cat-
egory was then computed. The human evaluation perfor-
mance is shown in Table 2 and our method improves all cat-
egories over DynamiCrafter. Notably, as the training data
for “Zoom out” is extremely scarce in the original Dynam-
iCrafter (0.26%), both the DynamiCrafter and our method
have relatively low scores on the zoom-out task and are not
entirely flawless, although our method can improve it.

Table 2. Camera Movement and Dataset Distribution.

Panleft  Pan right Tilt up Tiltdown Zoomin  Zoom out

Model 691%)  (127%)  407%)  (1.65%)  (0.94%)  (0.26%)
DynamiCrafter  0.43 0.53 0.53 0.28 0.33 0.08
Ours 0.45 0.55 0.60 0.35 0.53 0.33

6. Examples of Different Scenario.

In this section, we present additional examples of gener-
ated videos, as shown in Figure 2. The examples cover
various real-world scenes, including human figures, natural
phenomena, animals, and car movements. The human fig-
ures are generated with complete and fluid actions. In the
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A car is driving on a winding road.

Figure 2. The figure above illustrates the performance of our
model in generating videos across various categories, including
humanities, natural phenomena, animals, and modern transporta-
tion.
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A bar with chairs and a television, camera tilts up.

Figure 3. Visualization of Controllable Camera Movement with
Different Text Prompts. Examples featuring simple and distinct
main subjects are illustrated above, while those showcasing com-
plex and disordered backgrounds are depicted below.

second row, the generated waves submerge a lighthouse. In
the third and fourth rows, the model preserves high consis-
tency.

For the same image input, different text instructions are
used to control the variations in the actions within the gen-
erated videos. In the top two rows of Figure 3, an image
of Mount Fuji is fed into the model, with the text instruc-



tions “camera zooms in” and “camera pans left” appended
to control the corresponding camera movements in the out-

put.

The bottom two rows provide examples of camera con-

trol in more complex scenes, utilizing similar instructions
such as “camera zooms in” and “camera tilts up.” Despite
the high visual similarity, the generated videos respond well
to these instructions.
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