
PDFactor: Learning Tri-Perspective View Policy Diffusion Field
for Multi-Task Robotic Manipulation

Supplementary Material

A. Task Details

A.1. RLBench Tasks

In this section, we provide a concise overview of the RL-
Bench [31] dataset. Tab. 7 is an overview of the 18 selected
tasks we use in the experiments. Task variations include
randomly sampled colors, sizes, shapes, counts, place-
ments, and categories of objects. The color set comprises 20
options: colors = {red, maroon, lime, green, blue, navy,
yellow, cyan, magenta, silver, gray, orange, olive,
purple, teal, azure, violet, rose, black, white}. The
size set includes two options: sizes = {short, tall}, while
the shape set contains five: shapes = {cube, cylinder,
triangle, star, moon}. Object counts can range between:
counts = {1, 2, 3}. Placement and category details are task-
specific, and objects are positioned on the tabletop in ran-
dom poses. However, for larger objects such as drawers,
pose variations are constrained to ensure kinematic feasi-
bility when manipulated by the Franka robotic arm.

In the ablation study, we adopt task classification
from [25, 41] to categorize 18 RLBench tasks listed in
Tab. 7 into 8 groups based on their primary challenges.
These task groups consist of
• The Planning group contains tasks with multiple sub-

goals. The included tasks are: meat off grill and push

buttons.
• The Tools group is a special case of planning where a

robot must grasp an object to interact with the target ob-
ject. The included tasks are: slide block, drag stick

and sweep to dustpan.
• The Long term group requires more than 10 macro-steps

to be completed. The included tasks are: put in drawer,
place cups and stack blocks.

• The Rotation-invariant group can be solved without
changes in the gripper rotation. The included tasks are:
push buttons.

• The Motion planner group requires precise grasping.
The included tasks are: open drawer, place wine,
close jar and put item in drawer.

• The Multimodal group can have multiple possible tra-
jectories to solve a task due to a large affordance area of
the target object. The included tasks are: turn tap and
stack cups.

• The Precision group involves precise object manipula-
tion. The included tasks are: insert peg and sort

shape.
• The Visual Occlusion group involves tasks with large ob-

jects and thus there are occlusions from certain views.
The included tasks are: put in safe and put in

cupboard.

A.2. Real-World Tasks
Tab. 8 summarize the tasks used for the real-world evalua-
tion. For data collection, we randomly sample a task vari-
ation and place objects on the table in a random configura-
tion. A sequence of end-effector poses is collected by kines-
thetically moving the robot arm around. Then the robot is
reset to start pose and controlled to sequentially move to
each target pose, while the RGB-D stream from the camera
is simultaneously recorded.

B. Additional Details on Baselines
We provide more details for the baselines used in this paper:
• C2F-ARM-BC [32] iteratively voxelizes RGB-D images

and predicts actions in a coarse-to-fine manner. Q-values
are estimated within each voxel and the translation action
is determined by the centroid of the voxel with the maxi-
mal Q-values.

• PerAct [58] voxelizes the workspace and utilize Per-
ceiver Transformer to predict a 3D action value map.

• Act3D [19] featurizes the robot’s 3D workspace using
coarse-to-fine point cloud sampling and featurization.

• 3D Diffuser Actor [36] leverages a diffusion transformer
to iteratively transform pure noise to real action by com-
bining 3D point cloud representation with diffusion ob-
jective.

• RVT [21] projects calibrated point cloud to orthogonal
views via point splatting and deploys a multi-view trans-
former to predict actions heatmaps which are then fused
across views by back-projecting to 3D.

• RVT-2 [22] adopts a two-stage prediction strategy by
zooming in the point cloud centered at the action pre-
dicted from the first stage. Each stage shares the same
architecture with RVT.

C. Additional Implementation Details
C.1. Training Pipeline
To simplify the tasks, keyframe-based policies assume ac-
cess to a motion planner, so that a demonstrations can be
split into several observation-action pairs (i.e., keyframes).
Keyframes are identified based on empirical rules: an ac-
tion is a keyframe if (1) the joint-velocities are near zero
and (2) the gripper open state has not changed. To learn the



LayerNorm

Scale, Shift

Multi-Head

Self-Attention

Scale

LayerNorm

Scale, Shift

Feedforward

Scale

Input Tokens Proprioception

MLP

1

2

1 1， 

2 2， 

Figure 6. Transformer Block.

policy from demonstrations, we uniformly sample a group
of expert episodes from all the task variations, and then ran-
dom choose a keyframe or a non-keyframe with a prede-
fined probability for each episode to form a batch. A non-
keyframe is an observation at any time paired with the near-
est next keyframe action.

C.2. Model Details

Preprocessing. The observed RGB-D images are first en-
coded with two convolution layer and a SiLU activation to
upsample the channel dimension from 6 to 96. The 6 chan-
nels are composed of: 3 RGB and 3 point coordinates. The
point coordinates are Cartesian coordinates in the robot’s
coordinate frame. The triplane features are constructed by
projecting and max-pooling calibrated point cloud features
to the corresponding triplane grid. The projected triplane
features are split into patches through a convolution layer
with a kernel size same as stride. The language goals are
encoded with CLIP’s language encoder. The robot pro-
prioception, which includes 4 scalar values: gripper open,
left finger joint position, right finger joint position, and
timestep, is encoded by a MLP consisting of 2 linear layer
and a SiLU activation.
Architecture. For the tri-perspective view transformer, we
adopt standard transformer architecture with adaptive layer
norm. Fig. 6 shows the details of the transformer block we

Hyperparameter Value

Model
image resolution 128×128
triplane resolution (H,W,D) 128,128,128
patch size 4
MLP ratio 4.0
diffusion timesteps 100
noise scheduler (position) scaled linear
noise scheduler (rotation) cosine
rotation representation 6D

Training
keyframe sampling ratio 0.8
training iteration 30k
batch size 256
optimizer 8bit AdamW
learning rate 2.5×10−4

weight decay 1.0×10−4

momentum (0.9, 0.95)
EMA 0.9999
λ1 100
λ2,λ3 1

Table 6. Hyperparameters.

used in PDFactor model. Notably, to avoid gradient insta-
bility or numerical overflow, we apply QKNorm [28] when
calculating attention. For the denoising MLP, the noisy ac-
tion is first passed through a linear layer and then several
MLP blocks. Each block sequentially applies an adaptive
layer norm layer, a linear layer, a SiLU activation and an-
other linear layer, merging with a residual connection. The
latent vector z is added to the timestep embedding, which
serves as condition of the denoising MLP via adaptive layer
norm. Finally, a linear layer is applied to predict noise com-
ponent and binary states.

C.3. Hyperparameters
The hyperparameters used in PDFactor are shown in Tab. 6.
Other hyperparameters are in line with previous works [21,
22, 58] for fair comparison.

D. Additional Qualitative Analysis
We provide 7 representative task episodes generated by
our PDFactor in RLBench simulation and 6 real-world
task demo in the attached videos (demo sim.mp4 and
demo real.mp4). In both simulation and real-world sce-
narios, our PDfactor succeeds in solving tasks that require
long-term understanding, e.g., stack blocks, stack cups
and place cups. Besides, in the tasks that require high pre-
cision, e.g., insert peg, sort shape and place cups, our
model achieves preferable performance.



Task Variation Type # Variations Avg. Keyframes Language Template

open drawer placement 3 3.0 “open the drawer”
slide block color 4 4.7 “slide the block to target”
sweep to dustpan size 2 4.6 “sweep dirt to the dustpan”
meat off grill category 2 5.0 “take the off the grill”
turn tap placement 2 2.0 “turn tap”
put in drawer placement 3 12.0 “put the item in the drawer”
close jar color 20 6.0 “close the jar”
drag stick color 20 6.0 “use the stick to drag the cube onto the target”
stack blocks color,count 60 14.6 “stack blocks”
screw bulb color 20 7.0 “screw in the light bulb”
put in safe placement 3 5.0 “put the money away in the safe on the shelf”
place wine placement 3 5.0 “stack the wine bottle to the of the rack”
put in cupboard category 9 5.0 “put the in the cupboard”
sort shape shape 5 5.0 “put the in the shape sorter”
push buttons color 50 3.8 “push the button, [then the button]”
insert peg color 20 5.0 “put the ring on the spoke”
stack cups color 20 10.0 “stack the other cups on top of the cup”
place cups count 3 11.5 “place cups on the cup holder”

Table 7. RLBench task details.

Task Variation Type # Variations Avg. Keyframes Language Template

put fruit category 4 7.7 “put on plate”
push buttons color 5 9.4 “push the button, [then the button]”
stack cups color 5 15.2 “stack cups on cup”
stack blocks color 5 14.0 “stack blocks on green cylinder”
sort cylinder placement 1 8.4 “put cylinder in shape sorter”
put mustard placement 1 9.1 “put mustard on shelf”

Table 8. Real-world task details.


