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A. Implementation details
A.1. Baselines
Slot Attention[4] makes its core contribution by introduc-
ing the Slot Attention module. This module, based on an
attention mechanism, employs an iterative process to align
a set of shared slots with input features, generating object-
level representations. This approach enables effective learn-
ing of object segmentation and representation without the
need for supervision, addressing the problem of unsuper-
vised object discovery and learning. It has become the
mainstream paradigm in object-centric learning.
SLASH[3] aims to address the stability issue in object-
centric learning for single-view images, particularly the
“bleeding issue” where attention leaks into the background.
To solve this problem, SLASH introduces two key modules:
Attention Refining Kernel (ARK) and Intermediate Point
Predictor and Encoder (IPPE). ARK, a learnable low-pass
filter, optimizes attention maps by reducing noise and en-
hancing object-like patterns, while IPPE provides positional
guidance to slots via weak semi-supervision, injecting lo-
cation information into the slots. Together, these modules
enable SLASH to achieve stable and robust scene decom-
position.
SLATE[6] aims to address the limitations of existing
object-centric representation learning models in composi-
tional systematic generalization for image generation. By
combining the strengths of DALL·E and object-centric rep-
resentation learning, SLATE proposes a slot-based autoen-
coder architecture that uses a slot-conditioned Image GPT
decoder to handle complex interactions among image com-
ponents, overcoming the slot-decoding dilemma and the
pixel independence issue found in traditional decoders.
SLATE learns composable representations directly from
images, enabling stronger systematic generalization capa-
bilities.
SlotDiffusion[7] proposes an object-centric learning
method based on a Latent Diffusion Model, aiming to
address the insufficient generative capabilities of existing
object-centric models in image and video generation, while
maintaining their performance in object segmentation,
significantly improving image generation and temporal
reasoning.
LSD (Latent Slot Diffusion)[1] replaces traditional slot
decoders with a conditional latent diffusion model, en-
abling unsupervised compositional generation based on vi-
sual concepts extracted from images. This model addresses
the challenge of applying diffusion models to object-centric
learning and demonstrates superior performance compared

to transformer-based autoregressive models, particularly in
tasks such as object segmentation, property prediction, and
image editing for complex natural scenes.
DINOSAUR[5] introduces an architecture that combines
DINO’s self-supervised feature reconstruction loss with
the Slot Attention module, incorporating an inductive bias
based on the homogeneity of features within objects. This
approach addresses the limitations of existing image-based
object-centric learning methods in handling complex real-
world scene data, successfully bridging the gap between
object-centric representation learning on synthetic and real-
world datasets. It has gradually become a new paradigm in
the field of object-centric learning.
SPOT[2] introduces a dual-stage strategy to enhance unsu-
pervised object-centric learning in slot-based autoencoders,
addressing challenges in handling complex real-world im-
ages. It improves slot generation through a self-training
scheme that distills superior slot-attention masks from the
decoder to the encoder, enhancing object segmentation pre-
cision. Additionally, it strengthens autoregressive decoders
by incorporating sequence permutations, which amplify the
role of slot vectors in reconstruction and provide more ro-
bust supervisory signals.

A.2. More implementation details
Foreground and background indicator. In the indicator,
we use ViT-B/16 as the encoder (initialized with DINO by
default) and optimize only the final layer. We employ the
SGD optimizer with a learning rate set to 0.001 and a batch
size of 512. The learning rate follows a linear warm-up
for 10, 000 steps and then an exponential decay schedule.
Additionally, we clip the gradient norm to 1 to stabilize the
training process. We train for 100 epochs across all datasets.

For data augmentation in the indicator, we apply color
jitter with a probability of 80%, convert the image to
grayscale with a probability of 20%, flip the image horizon-
tally with a probability of 50%, and invert the image pixel
values with a probability of 20%. In the two branches of
contrastive learning, Gaussian blur is applied with proba-
bilities of 100% and 10%, respectively.

For all datasets, we set the loss weights of Lpixel, Lstuff,
and Lsep to 0.5, 0.5, and 0.5, respectively.
Fusion stage. In the fusion stage, we use ViT-B/16 as the
encoder (initialized with DINO by default) and freeze it dur-
ing training. We employ the Adam optimizer with a learn-
ing rate of 4e-4 and a batch size of 64. Following [5], we
use 7, 6, and 11 slots for the COCO, PASCAL, and MOVi-C
datasets, respectively.
Region Combination. Region Combination is an optional



module in this paper, used to refine the results from the fu-
sion stage using spectral clustering. We primarily use an
eigenvalue gap heuristic to determine the optimal number
of clusters, N , and set a lower bound for N . In MOVi, PAS-
CAL, and COCO, we set N to 10, 5, and 6, respectively.

B. Additional experimental results
B.1. Relationship between the indicator and the fi-

nal results on COCO dataset
As shown in Table 1, the conclusions on COCO are consis-
tent with those discussed for PASCAL in the main text,i.e.,
the performance of the indicator is positively correlated
with the final model results. However, there is one dif-
ference: our indicator shows a smaller improvement in
instance-level scene segmentation. We believe this is be-
cause our foreground-background indicator only performs
segmentation at the semantic level, and in the more com-
plex scene of the COCO dataset, it is insufficient to provide
instance-level information for slot attention-based meth-
ods. Achieving both semantic-level and instance-level
scene decomposition is one of the challenges for current slot
attention-based methods.

SA Method Indicator IoU mBOc mBOi

DINOSAUR

- - 38.9 31.1
Random - 24.5 19.0

ViT 31.3 39.4 31.1
Ours 48.4 40.1 31.2

Table 1. Relationship between the indicator and the final results.
This experiment is conducted on COCO dataset.

B.2. Impact of different losses on COCO dataset
As shown in Table 2, the results on COCO are consistent
with those on PASCAL, i.e., using only Lpixel and Lstuff

leads to training collapse. It is necessary for Lsep, Lpixel,
and Lstuff to work together in synergy to achieve effective
foreground-background separation.

B.3. Performance across different foreground sizes
Figures 1 and 2 show the results of our SPOT-based method
on the PASCAL and COCO datasets for different fore-
ground sizes. We calculate the proportion of foreground
pixels to total pixels and categorize the results accordingly.
The results show that our method outperforms the baseline
methods across different foreground sizes. On the PASCAL
dataset, when the foreground size exceeds 40%, our method
exhibits strong robustness, while its performance declines
when the foreground size is below 40%. We believe this
is due to the low resolution of the ViT encoder. On the

Lpixel Lstuff Lsep IoU mBOc mBOi

✓ 33.2 35.4 28.3
✓ ✓ 32.9 34.9 26.9
✓ ✓ 46.3 39.3 30.8
✓ ✓ ✓ 48.4 39.9 31.5

Table 2. Analysis of different loss functions on COCO dataset. IoU
represents the results of the indicator on segmenting foreground
and background regions. mBOc and mBOi represent the final re-
sults of DINOSAUR after fusing knowledge from different indica-
tors, which are optimized using different types of loss functions.

Figure 1. Results across different foreground sizes on COCO
dataset

Figure 2. Results across different foreground sizes on PASCAL
dataset

COCO dataset, our method improves as the foreground size
increases, indicating that our approach is more suitable for
complex scenes with more foregrounds. However, it is still
limited by the low resolution of the ViT encoder in scenes
with smaller foreground sizes.

C. More visualization

To provide a more comprehensive understanding of our
method, we present additional visualizations. Except for
the indicator demonstration, all experiments are conducted
on two real-world datasets (PASCAL and COCO) and two
baseline methods (DINOSAUR and SPOT). Figure 3 shows
the superiority of our proposed Foreground and Background
indicator compared to the slot attention-based method using
2 slots. Figures 4 and 5 demonstrate the role of different
components of our method. Figure 6 presents more qualita-
tive results. From these results, it is evident that our method,
compared to the baseline methods, can correctly fuse fore-



Figure 3. More example results of the proposed indicator and
SOTA slot attention method with 2 slots on COCO and PASCAL
dataset.

ground and background, leading to better scene decomposi-
tion.

Figure 4. The visualization results in our different components on
COCO dataset
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Figure 6. More qualitative results on COCO and PASCAL datasets. Ours: fusion stage + region combination.
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