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In the Supplementary Material, we supplement the im-
plementation details in Sec. 1. We further provide more ex-
periments and analyses, including network convergence in
Sec. 2, more comparisons with the state-of-the-art methods
in Sec. 3, analysis of reconstruction errors in Sec. 4, effec-
tiveness analysis of the innovation-guided multi-stage ASM
in Sec. 5, complexity analysis of the lightweight reconstruc-
tion network in Sec. 6, ablation studies on the loss function
in Sec. 7, and noise robustness in Sec. 8.

1. Implementation Details

For model training, following [6–8, 22, 26], we use a train-
ing set composed of 128×128 sub-images, which are ran-
domly cropped from 40,000 unlabeled images from the
COCO2017 dataset [12]. The sampling rate SR during
training varies from 0.10 to 0.50. We employ the Adam [9]
optimizer for model optimization and set the batch size to
16. The initial learning rate for the reconstruction network
training of SIB-ACS is set to 1 × 10−4. If there is no
improvement in the aggregate PSNR at sampling rates of
0.10, 0.25, and 0.50 on the Set11 dataset [10] after five con-
secutive training epochs, we halve the learning rate. For
the training of the lightweight reconstruction network in
IE, each lightweight reconstruction network is co-trained
with the sampling matrix. After completing the training of
one stage of the lightweight reconstruction network and the
sampling matrix, we freeze the parameters and then train
the subsequent stages of the lightweight reconstruction net-
work and sampling matrix.

For model evaluation, we employ widely used metrics
such as PSNR and SSIM for our evaluation experiments,
which are conducted on the widely used BSD68 [13] and
Urban100 [11] datasets. For color images, evaluations are
performed on the Y channel in the YCbCr color space. All
experiments are executed on an NVIDIA Quadro RTX 6000
GPU, within a PyTorch-1.11.0 environment.

*Corresponding authors.

Figure 1. Convergence curves of PC-Net, CD-Net, and PCCD-Net
on Set11 [10] at a sampling rate of 0.10.

2. Network Convergence
We investigate the convergence of PC-Net, CD-Net, and
PCCD-Net over iterative phases on the Set11 dataset [10]
with a sampling rate of 0.10, as shown in Fig. 1. The re-
sults demonstrate that the final convergence performance of
PC-Net and CD-Net is inferior to that of PCCD-Net. This
confirms the superiority of PCCD-Net over PC-Net and CD-
Net, as discussed in Sec. 4.4 of the main text, rather than
any reduction in model size caused by breakdown exper-
iments. Moreover, PCCD-Net achieves convergence at the
24th phase. Therefore, we set the number of iterative phases
K for PCCD-Net to 24.

3. More Comparisons with the state-of-the-art
Methods

We compare the proposed SIB-ACS with eight other
CS methods, including ISTA-Net+ [24], CSNet+ [16],
COAST [23], TCS-Net [5], CSformer [22], SODAS-
Net [17], AutoBCS [4], and SCNet [2], under five sam-
pling rates ranging from low to high on the widely used
BSD68 [13] and Urban100 [11] datasets, as shown in Tab. 1.
CSNet+ and AutoBCS are purely DL methods based on
pure CNN, TCS-Net and CSformer are pure DL methods
based on Attention. ISTA-Net+, COAST, and SODAS-Net
are DUNs, while SCNet is a self-supervised DUN. Despite
the fact that the proposed SIB-ACS uses an adaptive CS



Table 1. Average PSNR (dB) and SSIM results of other CS methods on BSD68 [13] and Urban100 [11] with different sampling ratios.
The best results are marked in bold.

Dataset Models CS Ratio
SR = 0.10 SR = 0.25 SR = 0.30 SR = 0.40 SR = 0.50 Average

BSD68

ISTA-Net+ (CVPR 2018) [24] 25.30/0.7001 29.31/0.8507 30.35/0.8782 32.16/0.9158 34.01/0.9421 30.23/0.8574
CSNet+ (TIP 2019) [16] 27.62/0.8085 31.19/0.9115 32.21/0.9292 34.23/0.9542 36.05/0.9693 32.26/0.9145
COAST (TIP 2021) [23] 26.43/0.7453 -/- 31.16/0.8939 33.02/0.9269 34.81/0.9497 -/-
TCS-Net (TCI 2023) [5] 27.42/0.8037 30.94/0.9083 -/- -/- -/- -/-
CSformer (TIP 2023) [22] 27.67/0.7923 31.36/0.9040 -/- -/- 36.43/0.9674 -/-
SODAS-Net (TIM 2023) [17] 26.51/0.7498 30.51/0.8793 31.58/0.9031 33.55/0.9343 35.41/0.9556 31.51/0.8844
AutoBCS (TCYB 2023) [4] 27.42/0.8083 31.19/0.9124 32.20/0.9297 -/- -/- -/-
SCNet (IJCV 2024) [2] 25.82/0.7295 -/- 31.02/0.8925 -/- 34.81/0.9502 -/-
SIB-ACS (ours) 29.54/0.8401 34.35/0.9312 35.72/0.9455 38.38/0.9653 41.14/0.9779 35.83/0.9320

Urban100

ISTA-Net+ (CVPR 2018) [24] 23.51/0.7199 28.90/0.8831 30.13/0.9067 32.17/0.9359 34.35/0.9569 29.81/0.8805
CSNet+ (TIP 2019) [16] 25.57/0.8156 29.87/0.9186 30.84/0.9333 32.97/0.9554 34.72/0.9683 30.79/0.9182
COAST (TIP 2021) [23] 25.93/0.8034 -/- 32.18/0.9314 34.18/0.9526 35.96/0.9663 -/-
TCS-Net (TCI 2023) [5] 25.86/0.8283 30.11/0.9235 -/- -/- -/- -/-
CSformer (TIP 2023) [22] 27.45/0.8351 31.97/0.9281 -/- -/- 37.17/0.9734 -/-
SODAS-Net (TIM 2023) [17] 26.22/0.8052 31.84/0.9254 33.12/0.9409 35.25/0.9597 37.10/0.9719 32.71/0.9206
AutoBCS (TCYB 2023) [4] 25.39/0.8244 29.61/0.9187 30.76/0.9343 -/- -/- -/-
SCNet (IJCV 2024) [2] 23.65/0.7036 -/- 31.50/0.9177 -/- 36.03/0.9651 -/-
SIB-ACS (ours) 29.70/0.8859 35.15/0.9516 36.50/0.9605 38.93/0.9727 41.28/0.9807 36.31/0.9503

Figure 2. Visual comparisons of reconstruction errors on test003 from BSD68 [13] at the sampling ratio of 0.10 and imag048 from
Urban100 [11] at a sampling ratio of 0.25. The best and second-best results are marked in red and blue colors, respectively.

model to handle adaptive image reconstruction at any sam-
pling rate from 0.10 to 0.50, whereas other methods typi-
cally use a single model focused on image reconstruction at
a specific sampling rate, the results in Tab. 1 demonstrate
that the proposed SIB-ACS significantly outperforms exist-

ing methods in terms of image pixels and textures across all
sampling rates.



Figure 3. Visual comparisons of reconstruction errors between US and AS on test033 from BSD68 [13] at a sampling ratio of 0.25.

Figure 4. Visual comparisons of reconstruction errors in different AS methods on img063 from Urban100 [11] at a sampling ratio of 0.25.

4. Analysis of Reconstruction Errors

Comparison of Reconstruction Errors with State-of-the-
art CS Methods. We supplement Sec. 4.2 of the main
text with a comparison of reconstruction errors against 14
state-of-the-art CS methods, as depicted in Fig. 2. These 14
state-of-the-art CS methods include AMP-Net-9-BM [27],
MADUN [18], TranCS [15], FSOINet [3], DGUNet+ [14],
LTwIST [6], DPC-DUN [19], OCTUF [20], NesTD-
Net [7], UFC-Net [21], CPP-Net [8], CASNet [1],
AMS-Net [25], and Uformer-ICS [26]. AMP-Net-9-BM,
MADUN, TranCS, FSOINet, DGUNet+, LTwIST, DPC-
DUN, OCTUF, NesTD-Net, UFC-Net, and CPP-Net are
UCS methods, while CASNet, AMS-Net, and Uformer-
ICS are ACS methods. Specifically, CASNet and AMS-
Net have access to ground truth, while Uformer-ICS does
not. The visual results in Fig. 2 show that the proposed
SIB-ACS outperforms both UCS and other ACS methods
in terms of overall image reconstruction error and error in
challenging areas, under various sampling rates. The results
suggest that the proposed SIB-ACS can efficiently allocate
more sampling to challenging-to-reconstruct areas, thereby
reducing the overall error of the reconstructed image.

Analysis of Reconstruction Errors in AS. We enrich
Sec. 4.3 of the main text with a comparative analysis of re-
construction errors between uniform and adaptive sampling
methods, as depicted in Fig. 3. The results demonstrate that
the proposed AS method surpasses US methods in terms
of effective sampling allocation. The proposed AS method
significantly reduces the reconstruction error in areas that
are challenging to reconstruct and decreases the overall im-
age reconstruction error, thereby facilitating high-fidelity

scene perception.
Analysis of Reconstruction Errors in Different AS
Methods. We extend Sec. 4.3 of the main text with a com-
parative analysis of reconstruction errors among different
AS methods, as depicted in Fig. 4. The reconstruction er-
rors clearly show that the measurement errors-guided meth-
ods result in unstable AS, and the saliency-guided methods
fail to correct AS due to the accumulation of initial sam-
pling allocation over multiple stages. Both scenarios lead
to the accumulation of anomalous sampling, resulting in un-
even residual reconstruction errors. However, the proposed
innovation-guided AS method, which minimizes the over-
all reconstruction error and rectifies AS through multi-stage
feedback, ultimately results in a lower overall reconstruc-
tion error.

5. Effectiveness Analysis of the Innovation-
Guided Multi-Stage ASM

Effectiveness Analysis of Innovation-Guided AS Meth-
ods. To analyze the effectiveness of the innovation-guided
AS when applied to blocks of varying complexity within the
same image, we examine the trend of reconstruction Mean
Squared Error (MSE) with sampling rates in four blocks of
different complexities in the cameraman image from the
Set11 dataset [10], as depicted in Fig. 5. Based on the
characteristics of innovation, the change in MSE with sam-
pling rates, which is represented by the slope of the curve
in Fig. 5, reflects the magnitude of the innovation. Fig. 5
suggests that the degree of reduction in reconstruction error
is directly determined by the slope of the relationship curve
between reconstruction error and sampling rates, rather than



Figure 5. The variation of reconstruction MSE for image blocks of different complexities in the cameramen image from Set11 [10] with
the change in sampling rate.

Figure 6. Visual comparisons of ASA results, reconstructed im-
ages, and reconstruction errors of different AS methods between
two-stage and multi-stage framework on test045 from BSD68 [13]
at a sampling ratio of 0.10.

the recovery of reconstruction error resulting from histori-
cal sampling. Consequently, the innovation criterion can
allocate sampling to areas with a more substantial reduc-
tion in reconstruction error more accurately than other cri-
teria based on the image domain. Sec. 4.3 of the main
text has already compared the performance of sampling in-
novation, measurement error, and saliency methods within
a multi-stage framework. We further supplement the per-
formance of sampling innovation, measurement error, and
saliency methods within a two-stage framework, as depicted
in Tab. 2 and Fig. 6(a). The results indicate that within
the two-stage framework, the proposed sampling innova-
tion method also surpasses other methods by a significant
margin. The ASA of Fig. 6(a) demonstrates that the pro-
posed sampling innovation method can avoid the influence
of the recovered image components on the ASA judgment,
thereby enabling it to more sensitively and extensively cap-
ture the recovery of image components brought about by the
increase in sampling, ultimately achieving higher fidelity
image reconstruction.
Effectiveness Analysis of a Multi-stage Framework. As
illustrated in Fig.5, the degree of recovery from reconstruc-
tion error for different image blocks varies and continues

Table 2. PSNR (dB) and SSIM comparisons of different Adaptive
Sampling (AS) methods in two-stage framework. The best results
is marked in bold.

AS methods BSD68 Urban100
SR = 0.10 SR = 0.25 SR = 0.10 SR = 0.25

Measurement Error 28.40/0.8123 32.51/0.9130 28.65/0.8681 33.86/0.9431

Saliency 28.45/0.8176 32.72/0.9177 28.48/0.8732 33.72/0.9460

Sampling Innovation 29.29/0.8336 34.20/0.9296 28.95/0.8737 34.28/0.9467

Table 3. Average PSNR (dB) and SSIM results of two-stage and
multi-stage AS framework on Set11 [10] and Urban100 [11] with
different CS ratios.

Framwork of ASM BSD68 Urban100
SR = 0.25 SR = 0.40 SR = 0.25 SR = 0.40

Two-stage 34.20/0.9296 38.19/0.9647 34.28/0.9467 37.80/0.9696

Multi-stage 34.35/0.9312 38.38/0.9653 35.15/0.9516 38.93/0.9727

to evolve with the increasing sampling rate. For instance,
among the four image blocks, block 3 exhibits the largest
recovery amount of reconstruction error with the increase
of sampling rate within the range below 0.10, block 2 dom-
inates when the rate ranges from 0.10 to 0.70, and block
4 takes the lead when the rate is above 0.70. Therefore,
the ASA judgment under a single sampling rate situation
is suboptimal, and a multi-stage feedback AS can yield a
more accurate ASA. We conduct comparative experiments
of innovation-guided two-stage AS and multi-stage AS, as
presented in Tab. 3 and Fig. 6. For a fair comparison,
the uniform sampling rate and adaptive sampling resources
in the two-stage AS and multi-stage AS are kept identi-
cal. Tab. 3 reveals that the innovation-guided multi-stage
AS framework significantly improves the quality of im-
age reconstruction compared to the two-stage AS frame-
work. Fig. 6 indicates that the innovation-guided multi-
stage AS framework yields more reasonable ASA results
than the two-stage AS framework. As illustrated in Fig. 6,
the innovation-guided two-stage AS framework cannot cor-
rect the ASA error due to one-time ASA. However, the
innovation-guided multi-stage AS framework, owing to the
feedback from multi-stage AS, adjusts the ASA stage by
stage, ultimately achieving a more precise ASA.



Table 4. Comprehensive comparisons of the model average PSNR,
parameter size, and running time. The best results is marked in
bold.

Models OCTUF NesTD-Net UFC-Net CPP-Net CASNet PC-Net8 PCCD-Net

PSNR (dB) 30.31 30.32 30.01 30.63 30.09 30.07 30.58

Params (M) 0.29 5.93 1.90 12.47 15.85 0.30 2.32

Time (s) 0.061 0.196 0.166 0.193 0.106 0.010 0.060

Figure 7. The variation of reconstruction MSE between PC-Net8
and PCCD-Net for image blocks of different complexities in the
cameramen image from Set11 [10] with the change in sampling
rate.

Table 5. PSNR (dB) and SSIM comparisons of different loss func-
tions on Set11 [10], BSD68 [13], and Urban100 [11] at a sampling
ratio of 0.10. The best results is marked in bold.

Loss Function Set11 BSD68 Urban100

l1 32.31/0.9154 29.57/0.8343 29.59/0.8804

l2 32.27/0.9159 29.57/0.8351 29.65/0.8814

l1 + SSIM 32.30/0.9177 29.54/0.8401 29.70/0.8859

6. Complexity Analysis of the Lightweight Re-
construction Network

The lightweight reconstruction network in the ASM is an
8-stage PC-Net (PC-Net8). We evaluate the comprehensive
performance of PC-Net8, including average PSNR, model
size, and running time, as detailed in Sec. 4.5 of the main
text, as presented in Tab. 4. The results indicate that the
model size of PC-Net8 is close to that of the lightweight
OCTUF [20], and PC-Net8 has the shortest running time,
thus ensuring the efficient operation of the ASM. Addition-
ally, we examine the trend of MSE changes in the recon-
struction of the four image blocks in Fig. 5 by PC-Net8 and
PCCD-Net under varying sampling rates, as illustrated in
Fig. 7. The results reveal that although the image recon-
struction quality of PC-Net8 is lower than that of PCCD-
Net, PC-Net8 and PCCD-Net exhibit similar trends in the
change of image reconstruction MSE with sampling rates,
which demonstrates the feasibility and accuracy of employ-
ing PC-Net8 for IE. Considering the efficiency and accuracy
of IE in ASM, we choose PC-Net8 as the lightweight recon-
struction network for IE.

7. Ablation of Loss Function

To assess the impact of different loss functions on model
training, we independently utilize l1, l2, and l1 + SSIM

Figure 8. Comparisons of noise robustness on BSD68 [13] at the
sampling ratios of 0.10 and 0.25.

loss functions to train the model, and the PSNR and SSIM
results on the Set11 [10], BSD68 [13], and Urban100 [11]
datasets at a sampling rate of 0.10 are presented in the
Tab. 5. The results suggest that the l1 + SSIM loss func-
tion generally provides superior reconstruction quality, and
consistently outperforms in terms of SSIM across all tested
scenarios. Considering both the pixel-level detail and tex-
ture of the reconstructed images, we select l1 + SSIM as
the loss function for model training.

8. Noise Robustness
In practical applications, scene sensing is often affected by
noise. We evaluate the reconstruction performance of SIB-
ACS and other state-of-the-art methods in the presence of
Gaussian noise with a mean of 0 and standard deviations
of 0, 2, 4, and 6 on the BSD68 [13] dataset. The re-
sults at sampling rates of 0.10 and 0.25 are presented in
Fig. 8. The results demonstrate that the proposed SIB-
ACS outperforms other advanced methods under different
sampling rates and varying degrees of noise, thus show-
casing the excellent noise robustness of the proposed SIB-
ACS.
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