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8. Additional Experiments
Additional experiments focusing on model inputs, code-
book patterns, and finetuning effects are provided in the
appendix. These parts provide insight into the decision-
making process for selecting the experimental configura-
tions within the VidMuse framework.
Exploration on model inputs. To explore the impact of
different video sampling rates and the duration of video seg-
ments in the Short-Term module on performance, we con-
ducted ablation studies on input FPS and short-term seg-
ment duration, detailed in Table A1. To intuitively assess
the effectiveness of different settings, we employ an Av-
erage Rank (AR) metric. The AR metric ranks the re-
sults for a metric across all methods within the same table.
The ranking result is from 1 to N (equals to the number
of methods within the table), where 1 is the best and N is
the worst. We eventually obtain AR results by averaging
the ranking results for all metrics. Note that the AR results
cannot be compared across different tables since this met-
ric is designed to showcase the dominance of each method
within one table clearly. From Table A1, we observe that
increasing both FPS and duration tends to enhance model
capabilities, suggesting that denser frame sampling yields
a more detailed video representation, thereby improving
music generation. Nevertheless, to balance computational
costs and performance, we use a 30-second duration at 2
FPS as our optimal setting.
Codebook Pattern. The exploration of codebook interleav-
ing patterns has attracted attention from researchers across
several domains [10, 35, 71, 78, 83]. In our ablation study
focusing on the patterns, we find that while the Parallel and
Vall-E [71] patterns align with the findings for text-to-music
generation in MusicGen [10], the flattened codebook pat-
tern does not consistently exceed the performance of the
delay pattern in tasks of generating music from video. The
delay pattern, notable for its relatively low computational
cost, is therefore selected for our implementation. The re-
sults of this study are presented in Tab. A2.
Finetuning Effect. Our ablation study on the effects of
the data scale during finetuning, as detailed in Table A3,
highlights a balance between data size and model perfor-
mance. Despite not performing best in all the metrics, the
model finetuned with 20k pair data emerges as our choice.
The 20k data offers a compelling trade-off: it significantly
improves performance across key metrics without requiring
the extensive computational resources that larger datasets
demand. The results also validate the effectiveness of our

ranking strategy based on ImageBind-AV scores (detailed
in Appendix 9), showing that prioritizing videos with higher
audio-visual alignment improves finetuning data quality
and enhances model performance.

9. Details of Dataset Construction
Coarse Filtering. We design a rule-based filtering strategy
for initial data screening. First, we perform illegal video
and audio filters, which filter out the video without an audio
track or a video track. Next, we apply a duration filter to fil-
ter out videos based on their duration, excluding those that
are either too long (over 480 seconds) or too short (under
30 seconds). Additionally, we implement a domain filter
to examine metadata and exclude specific categories such
as Interview, News, and Gaming, which often have back-
ground music that lacks semantic alignment with the visual
content. We also filter out videos containing inappropriate
content, such as violence or explicit material.
Fine-grained Filtering. To further ensure the quality of
our data, we conducted additional audio and visual analy-
ses. For the audio analysis, raw videos may contain audio
segments without music, such as speech, silence, etc. To en-
sure the final dataset consists of high-quality video-music
pairs, we retain only those videos with a larger portion of
music content. We utilize the sound event detection model
PANNs [34], which provides frame-level event labels across
the entire video to identify music events. Based on the ob-
servation from a subset of videos, we define two thresholds,
i.e., a confidence threshold and a duration threshold, for an-
alyzing the music event. The confidence threshold is set at
0.5, indicating an audio frame is considered a music event
if the PANNs model predicts the probability of the “Music”
label to be over 0.5. The duration threshold of a music event
requires that at least 50% of the audio’s frames are classified
as music events for the video to be considered valid.

For the visual analysis, some videos only consisting of
static images will be removed. Specifically, we uniformly
sample multiple temporal windows without overlap from
the video. Within each window, we use Structural Similar-
ity Index Measure (SSIM) [72] between the first frame and
the last frame. By aggregating average SSIM values from
all temporal windows, we remove the videos with average
SSIM values lower than a threshold of 0.8, empirically.
Music Source Separation. Since the irrelevant human
speech in videos poses a negative impact on music gen-
eration, we apply music source separation to process the
videos. We employ Demucs [59] as the music source sepa-



Figure A1. Distribution of music genres in the dataset, showcasing the diverse representation of genres such as electronic, classical, and
jazz.

Figure A2. Distribution of instruments in the dataset, emphasizing the frequent usage of synthesizers, pianos, and drums, while also
including diverse instruments such as violins and saxophones.

ration model to filter out the speech signals.
Audio-Video Alignment Ranking. ImageBind-AV [22]
scores usually reflect the semantic correlation between the
vision and audio modality. To construct a high-quality sub-
set with better alignment, we compute the ImageBind-AV
scores for all the data and rank them accordingly.

After filtering and ranking, we split the final videos into
the training set, V2M, from all the paired data. The top 20K
pairs are selected to form the finetuning subset, V2M-20K.
In addition, we randomly sample 1,000 videos excluded
from the training set. These 1,000 videos are then further
evaluated by five human experts based on audio quality and
the degree of audio-visual alignment. Ultimately, the top
300 high-quality videos are selected as a test set, termed as
V2M-bench.

10. Additional Dataset Analysis
Music Genre Distribution. To better understand the di-
versity of our dataset, we analyze the distribution of music
genres across all selected video-music pairs. The results are
illustrated in Fig. A1. As shown, the dataset covers a wide
range of genres, including but not limited to electronic, clas-
sical, pop, and rock. The diversity in genres ensures that the

dataset provides a comprehensive foundation for the task
of video-to-music generation, enabling robust performance
across various musical styles.

Instrument Usage Distribution. We also analyze the us-
age of different instruments within the dataset. The distribu-
tion is shown in Fig. A2. The frequent occurrences of syn-
thesizers, pianos, and drums, along with a variety of other
instruments, ensure the ability to capture diverse musical
elements in the video-to-music generation task.

Mood Information. In addition to genres and instruments,
we also explore the mood information present in the mu-
sic data. A word cloud representation of the mood labels
is shown in Fig. A3, where the font size corresponds to
the frequency of each mood label. Commonly occurring
moods include inspiring, happy, dark, powerful, and senti-
mental, showcasing the emotional diversity of the dataset.
This emotional richness enhances the dataset’s capacity to
generate music that aligns closely with the mood conveyed
in videos.

All music-related metadata, including genre, instrument,
and mood, is annotated using Qwen2-Audio, a state-of-the-
art (SOTA) model for music understanding.



Figure A3. Word cloud of mood labels in the dataset, highlighting the diversity of emotions such as inspiring, happy, powerful, and dark.

Table A1. Ablation studies on video duration and FPS.

Duration(s) FPS
Metrics

KL ↓ FD ↓ FAD ↓ density ↑ coverage ↑ Imagebind ↑ AR ↓
5 2 0.820 51.101 4.117 1.430 0.74 0.148 7.00

15 2 0.849 41.131 2.709 1.406 0.803 0.181 5.33

30 2 0.843 41.354 2.413 1.487 0.840 0.193 3.67

5 4 0.800 51.540 4.343 1.271 0.787 0.145 7.17

15 4 0.830 41.154 2.562 1.278 0.823 0.176 5.17

30 4 0.849 40.032 2.418 1.538 0.843 0.193 2.84

5 8 0.819 50.667 4.069 1.515 0.743 0.153 5.67

15 8 0.857 42.106 2.790 1.476 0.753 0.187 6.00

30 8 0.824 38.942 2.299 1.573 0.843 0.180 2.17

Table A2. Ablation studies on codebook pattern.

Patterns
Metrics

KL ↓ FD ↓ FAD ↓ density ↑ coverage ↑ Imagebind ↑
Parallel 0.921 68.603 18.243 0.562 0.183 0.166

Flatten 0.819 52.931 4.260 1.351 0.500 0.201
Delay 0.843 41.354 2.413 1.487 0.840 0.193

Vall-E 0.866 57.286 4.681 1.148 0.354 0.189

Table A3. Ablation studies on the ratio of finetuning data.

Finetuning
Data

Metrics
KL ↓ FD ↓ FAD ↓ density ↑ coverage ↑ Imagebind ↑

0 0.712 38.184 3.956 1.125 0.583 0.181

10k 0.717 34.667 2.961 0.856 0.673 0.196

20k 0.734 29.946 2.459 1.250 0.730 0.202
40k 0.776 41.075 3.557 1.094 0.726 0.195

60k 0.828 40.160 2.844 0.977 0.660 0.192

11. Details of Evaluation Metrics

Frechet Audio Distance (FAD) is a reference-free evalua-
tion metric for assessing audio quality. Similar to Frechet
Image Distance (FID)[28], it compares the embedding
statistics of the generated audio clip with ground truth au-
dio clips. A shorter distance usually denotes better human-

perceived acoustic-level audio quality. However, this metric
cannot reflect semantic-level information in audio. We re-
port the FAD based on the VGGish[27] feature extractor.
Frechet Distance (FD) measures the similarity between
generated samples and target samples in audio genera-
tion fields. It’s similar to FAD but uses a PANNs fea-
ture extractor instead. PANNs[34] have been pre-trained



on AudioSet[21], one of the largest audio understanding
datasets, thus resulting in a more robust metric than FAD.
Kullback-Leibler Divergence (KL) reflects the acoustic
similarity between the generated and reference samples to
a certain extent. It is computed over PANNs’ multi-label
class predictions.
Density and Coverage [55] measures the fidelity and di-
versity aspects of the generated samples. Fidelity measures
how closely the generated samples match the real ones,
while diversity assesses whether the generated samples cap-
ture the full range of variation found in real samples. We use
CLAP[75] embeddings for manifold estimation.
Imagebind Score [22] assesses to what extent the generated
music aligns with the videos. Despite the fact that Image-
bind extends the CLIP to six modalities, we only use the
branches of audio and vision. Since we use ImageBind to
filter out video-audio pairs with a low matching score dur-
ing dataset construction, the ImageBind score is naturally
used in our evaluation. We acknowledge that ImageBind
is not specifically trained on music data, which may limit
its effectiveness in capturing the full complexity of video-
music alignment. However, it remains the most suitable op-
tion available for this task at present.

12. Details of the Inference Process
When predicting music on videos of arbitrary length, main-
taining music consistency and coherence is particularly im-
portant. However, it leads to a significant challenge on
computational resources due to the quadratic dependency
of transformers-based models on sequence length [5, 82].

To address this problem, we adopt a sliding window ap-
proach for inferring the whole video. During inference,
given an input video with a length of L, we define Ls as
the length of the sliding window and O as the overlap be-
tween consecutive windows. With the window start posi-
tion t initially set to 0, the inference involves the following
steps compactly while t + Ls ≤ L: (1) using a visual en-
coder to extract feature representations X and capture long-
term dependencies Xl; (2) collecting embeddings within the
window [t, t+Ls] to obtain Xs; (3) predicting the music to-
kens Ȳ for the reduced window [t, t + Ls − O] based on
Xl and Xs; (4) decoding Ȳ to the predicted audio Ā using
the audio decoder; (5) move the window forward by setting
t = t+ Ls −O, and repeating steps (2) to (5) until the end
of the video.

After finishing the above steps, we can concatenate all
musical segments to form a cohesive piece of music that
aligns in duration with the video.

13. Qualitative Analysis
In Fig. A5, our qualitative analysis highlights specific lim-
itations of CMT, Video2Music, and M2UGen. CMT and

Video2Music extract visual cues to generate symbolic mu-
sic, i.e., MIDI notes. However, CMT’s training strategy for
symbolic music generation leads to discontinuities, particu-
larly for slowly changing or static frames, where the model
fails to predict symbolic music notes, resulting in periods
of silence. Additionally, the approach of predicting MIDI
notes and then rendering them into audio, as employed by
both CMT and Video2Music, lacks high-frequency content,
negatively affecting auditory perception. M2UGen utilizes
LLMs to fuse multimodal representation and then project
LLMs’ embeddings into music via a text-to-music genera-
tion model. However, this approach relies on text embed-
dings as intermediaries, which causes the loss of visual in-
formation and restricts the model’s ability to detect nuanced
visual variations. As a result, the music generated by this
method usually showcases repetitive musical themes and
suffers from a lack of diversity, as evidenced in Fig. A5 and
the supplementary videos. The last row of Fig. A5 demon-
strates that our Long-Short-Term (LST) approach is capable
of generating music that is rich in diversity and semantically
consistent with the video.

14. User Study Interface
Fig. A4 illustrates the A/B test interface used during the user
study. Participants evaluated the videos based on four cri-
teria: Audio Quality, Video-Music Alignment, Musicality,
and Overall Assessment. This interface shows participants
comparing two videos side-by-side and selecting the better
one for each criterion.

15. Supplementary Videos
For additional insights and demonstrations, we kindly re-
fer readers to our supplementary video for a comprehensive
showcase of our method’s performance.



Figure A4. User study process. Participants evaluate the videos based on four criteria: Audio Quality, Video-Music Alignment, Musicality,
and Overall Assessment.
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Figure A5. Qualitative Comparison results on sound spectrograms produced by different methods.
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