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1. Scheduling

The scheduling of the hyper-parameters is summarized in
table 1. We used 31 = 0.9, B2 = 0.995 and Aphoro = 40
in all experiments, where 31 and (32 are ADAM’s first and
second moments. A blank cell indicates that the value is
identical to that of the row above. Values between brackets
are linearly interpolated based on the current training iter-
ation of the given level of detail. Our general strategy is
to start with a high learning rate and high regularizations
that are progressively halved during training. We lower the
learning rate in the final level of detail to stabilize conver-
gence. The learning rate is also linearly increased starting
from zero during the first 50 iterations of each level of de-
tail as a warm-up. We use stronger regularizations at the
coarsest level of detail on DTU and BMVS since the ini-
tialization from a sphere is poorer compared to the visual
hull initialization of the other two datasets. The gradients
are accumulated over 4 to 8 complete images before step-
ping the optimizer. The photometric loss is divided by the
number of images in the batch as a normalization. We ad-
just the number of levels of detail based on the resolution
of the input images. The grid resolution is manually chosen
so that a voxel roughly projects to an area equivalent to that
of a pixel. The MLP weights and probe features are trained
with a lower learning rate compared to the spatial features
and voxel sdf values, also for stability.

2. Visual ablation

A visual ablation of the spherical harmonic order [ is pre-
sented in fig 1.

3. Detailed tables

Tables 7 to 19 contain detailed metrics from all our experi-
ments. The dimensionality of the spatial features F'; is n,
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Figure 1. We train a scene with [ = 4, that we then visualize with
[ varying from 1 to 4, left to right. The corresponding angular
features are on the top row, and the predicted color is on the bottom
row. We observe that the specularities can be removed simply by
disabling the high order spherical harmonics coefficients.

and the dimensionality of the angular features F, is n,. We
denote a training configuration with a triplet (ns, nq,1). A
v-symbol denotes the training of per-camera bias vectors,
an X-symbol is used otherwise.

4. Neural Architecture comparison

Table 5 gives a comparison of several neural architec-
tures used in the context of implicit surface reconstruction.
Thanks to our light field probes, our MLP is entirely ag-
nostic to the surface orientation and position, hence we can
reduce its size and obtain high quality renderings, in real-
time.

5. Comparisons on ActorsHQ

Geometric comparisons on the ActorsHQ dataset [2] are
shown in figures 3, 4, 5, 6. The dataset comes with meshes
reconstructed by RealityCapture [1], a multi-view stereo re-
construction software. We cannot compute geometric met-



Level of | Learning rate | Learning rate Images per .
detail (Voxegls) (Mng’) Asik Asar Ateatures Anormal Aprobes bitchp Iterations
LOD4 | [0.025,0.01] 0.01 [1.0,0.1,0.1] | [2.0,0.2,0.2] | [0.5,0.05,0.05] | [0.5,0.05,0.05] | [2.0,0.2,0.2] 8 3000
LOD 3 [0.2,0.1] [0.4,0.2] [0.1, 0.05] [0.1,0.05] [0.4,0.2]
LOD 2
LOD 1 1000
LODO | [0.01,0.001] | [0.01, 0.001] 4 500
Table 1. Schedule for DTU
LOD 4 [0.1, 0.01] 0.01 [0.25, 0.025, 0.025] | [0.5, 0.05, 0.05] | [0.25, 0.025, 0.025] | [0.025, 0.0025, 0.0025] | [2.0, 0.2,0.2] 8 4000
LOD 3 [0.05, 0.025] [0.1, 0.05] [0.05, 0.025] [0.005, 0.0025] [0.4,0.2]
LOD2 | [0.025,0.01] 3000
LOD 1 1500
LODO | [0.01,0.001] | [0.01,0.001] 4 1000
Table 2. Schedule for BlendedMVS
Lzzte ilff Le?{,rélileg] Sr)ate Lea(lil/[llli%)r ate )\Eik )\sdf )\features /\normal )\probes Imiifghper Iterations
LOD 4 [0.025, 0.01] 0.01 [0.05,0.025] | [0.2,0.1] | [0.1, 0.05] 0 [0.4,0.2] 4 1500
LOD3
LOD 2
LOD 1
LODO [0.01, 0.001] [0.01, 0.001] 0.0125 0.05 0.025 0.0063 0.1 1000
Table 3. Schedule for MVMannequins
Level of | Learning rate | Learning rate Images per .
detail (VOXGgls) (Mng)) )\Eik )\sdf Afcaturcs )\nnrma] )\pmbcs bitchp Iterations
LOD 6 [0.05, 0.025] 0.01 [0.05,0.025] | [0.2,0.1] | [0.025,0.0125] 0 [0.4,0.2] 8 500
LOD 5 1000
LOD 4 1500
LOD3
LOD 2 [0.025, 0.0125] 1000
LOD1 | [0.01,0.0025] | [0.01, 0.001] 0.0125 0.05 0.0063 0.0125 0.1 4
LOD O [0.01, 0.001] 0.001 0.025 500

Table 4. Schedule for ActorsHQ

. SDF MLP Color MLP
Method Grid Type Layers / Neurons Layers / Neurons
NeuS X 8/256 417256
NeuS2 hash-grid 1/64 2/64
Voxurf dense X 4/192
Ours sparse X 2/32

Table 5. Neural architectures in the literature.

rics since there is no ground truth obtained independently
from the images. A qualitative comparison of the volume
rendering quality is shown in figures 7, 8 and 9. We used
the (4,4,4) configuration here. Note that the input images
come with pre-baked segmentation masks, as shown in fig-
ure 2, that tend to have poorer accuracy on the arms and
hands. This results in both geometric and photometric arti- Figure 10 presents a comparison of some of the reconstruc-
facts that are difficult to eliminate. tion results on DTU [3]. Close-ups of the volume rendered

Figure 2. Imprecise segmentation example.

6. Comparisons on DTU
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Figure 3. Reconstruction results on ActorsHQ. Left to right: RealityCapture, Ours, Voxurf, NeuS2.

images are shown in figures 11 and 12. Our results are ob-
tained with the (4,4,4) configuration.

7. Comparisons on BlendedMVS

Geometric comparisons on the BlendedMVS dataset [4] are
shown in figures 13 and 14. Qualitative comparisons of
the volume rendering are shown in figure 15. We used the
(8,8,4) configuration here as it performed a little better on
this dataset (see table 16).

8. Performance Analysis

We record inference timings on the apples example (scan
63 of DTU, (4,4,4) configuration), with a window of res-
olution 1920x 1163 and present the results in table 6. We
lock the memory clock to 5001MHz and the gpu clock to
1500MHz to obtain stable performance measurements. The
shading column corresponds to the assignment of a color to
each voxel. The render column corresponds to the volume

rendering kernel, which samples the SDF and color fields
along rays to generate the final image. The first 4 rows cor-
respond to the fully-fused color prediction kernel, with the
computation of the spatial and angular features enabled or
disabled. Thus, the 4th row corresponds to the MLP infer-
ence only whereas the 1st row corresponds to the full model.
The last two rows correspond to the computation of Fg or
F, on their own, in separate kernels, and whose result is
interpreted as a per-voxel color for visualization.

We observe that just evaluating the MLP (4th row) or
computing the angular features on their own (5th row)
roughly takes the same amount of time (1.80ms and 1.96ms)
but that fusing the two operations together only takes
2.32ms, much less than the sum of the two (1.80 + 1.96 =
3.76ms). Including the computation of the spatial features
gives the full model at 2.47ms.



RealityCapture Ours

Figure 4. Reconstruction results on ActorsHQ. Left to right: RealityCapture, Ours, Voxurf, NeuS2.

| Type | Shading | Render |
MLPV,F,V,F, v 247 1.34
MLPV,F,V,Fq, X 1.92 1.34
MLPV,F, X,F,/ 2.32 1.34
MLPV,F, X, F, X 1.80 1.34
F, only 1.96 1.34
F only 0.82 1.34

Table 6. Timings in ms
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Figure 5. Reconstruction results on ActorsHQ. Left to right: RealityCapture, Ours, Voxurf, NeuS2.
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Figure 6. Reconstruction results on ActorsHQ. Left to right: RealityCapture, Ours, Voxurf, NeuS2.
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Figure 7. Qualitative comparison on ActorsHQ. Left to right: ground truth, Ours, Voxurf, NeuS2. Our method is able to handle the full
resolution images, which enables to reconstruct the sewing patterns at a sub-millimetric scale.
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Figure 8. Qualitative comparison on ActorsHQ. Left to right: ground truth, Ours, Voxurf, NeuS2.
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Figure 9. Qualitative comparison on ActorsHQ. Left to right: ground truth, Ours, Voxurf, NeuS2.
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Scan 110 Scan 24 Scan 97 Scan 37

Scan 63

Figure 10. Reconstruction results on DTU. Left to right: Ours, Voxurf, NeuS2, 2DGS. We find that 2DGS excels at reconstructing flat
surfaces (doll house roof) but tends to under-perform on reflective materials. 2DGS fails to extract geometry on some parts of the objects
(scans 97 and 63). In contrast, our method recovers smooth surfaces even under strong specularities (metal scissors, tuna can and apples).
Voxurf struggles on the most shiny materials despite its considerably larger MLP. NeuS2’s reconstruction suffers from grid-aligned artifacts,
possibly due to discontinuities in its hash-grid interpolation scheme (shoulder of the bunny in scan 110).
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Figure 11. Qualitative comparison on DTU. Top: scan 24, middle: scan 37, bottom: scan 63. Left to right: ground truth, Ours, Voxurf,
NeuS2, 2DGS.
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Figure 12. Qualitative comparison on DTU. Top: scan 69, middle: scan 97, bottom: scan 110. Left to right: ground truth, Ours, Voxurf,
NeuS2, 2DGS.
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Figure 13. Reconstruction results on BlendedMVS. Left to right: Ground Truth, Ours, Voxurf, NeuS2.
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Figure 14. Accuracy heatmaps on BlendedMVS. The pink color denotes points too far away from the ground truth, which are ignored in
the computation of the metrics. Left to right: Ours, Voxurf, NeuS2. Voxurf fails to carve inside the two hemispheres in the stone example
and the corners of the base are missing. However, Voxurf is able to carve under the dog statue whereas both NeuS2 and our method fail on

this example. NeuS2 is noticably more noisy on all examples.
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Figure 15. Qualitative comparison on BlendedMVS. Left to right: ground truth,



kinette kino
Chamfer (mm) Mean cos naked jea optl opt2 opt3 sho tig cos naked jea opt sho tig
4,44X 1.04 1.51 0.54 109 | 114 | 1.75 | 1.22 | 095 | 0.66 | 1.53 0.60 0.75 | 1.51 | 0.67 | 0.67
MMH L15 155 ] 054 | 110 | 116 | 2.12 | 145 | 107 | 0.68 | 177 | 0.59 | 0.80 | 172 | 075 | 0.75
Voxurf 1.59 1.70 1.28 1.62 | 1.62 | 2.06 | 1.61 148 | 098 | 2.60 1.30 127 | 254 | 1.12 | 1.06
Neus2 2.13 3.71 1.43 2.10 | 2.13 | 2.90 2 2.12 | 1.25 | 3.55 1.61 1.64 | 2.61 143 | 1.37
Colmap 3.51 2.69 427 299 | 459 | 418 | 2.81 | 3.71 | 2.50 | 4.11 4.20 248 | 434 | 3.09 | 3.23
2DGS 3.35 5.05 2.27 830 | 3.25 | 340 | 3.63 | 2.66 | 3.52 | 4.18 2.25 175 | 280 | 1.98 | 1.87
Table 7. MVMannequins per-scene chamfer (mm)
kinette kino
PSNR (db) Mean cos naked jea optl opt2 opt3 sho tig cos naked jea opt sho tig
(4,4,4)X 36.81 29.48 | 40.61 | 30.73 | 4048 | 38.69 | 34.13 | 37.70 | 31.74 | 39.64 | 41.57 | 3580 | 39.29 | 37.50 | 37.99
MMH 3633 || 29.24 | 40.03 | 30.55 | 39.94 | 3801 | 33.82 | 37.18 | 31.38 | 39.22 | 40.88 | 3525 | 3859 | 37.11 | 37.49
Voxurf 35.51 28.39 | 37.51 30.20 | 39.26 | 37.34 | 32.82 | 36.73 | 30.81 | 38.17 | 40.09 | 34.45 | 37.57 | 36.69 | 37.16
Neus2 34.22 28.09 | 37.23 | 29.44 | 3698 | 3555 | 32.58 | 34.98 | 30.14 | 36.65 | 38.05 | 33.39 | 3578 | 35.01 | 35.23
2DGS 34.89 2726 | 37.92 | 2888 | 37.62 | 36.84 | 3222 | 36.24 | 29.86 | 37.97 | 38.82 | 34.99 | 37.28 | 36.14 | 36.50
Table 8. MVMannequins per-scene PSNR
kinette kino
Chamfer (mm) Mean cos naked jea optl opt2 opt3 sho tig cos naked jea opt sho tig
(8,84)X 1.03 1.48 0.54 1.08 | 1.12 | 1.70 124 | 093 | 0.65 | 1.52 0.59 0.74 | 1.51 0.66 | 0.67
(12,12,H)X 1.04 1.52 0.54 1.09 1.13 1.72 123 | 096 | 0.66 | 1.52 0.59 074 | 1.52 | 0.68 | 0.67
@ADX 130 156 | 122 | 122 | 125 | 1.78 | 162 | 150 | 1.05 | 1.78 | 1.16 | 0.81 | 1.48 | 0.86 | 0.05
(4,4,2)X 1.04 1.48 0.59 1.09 | 1.10 | 1.71 | 1.22 | 094 | 0.67 | 1.51 0.64 074 | 145 | 0.69 | 0.69
(4,4,3)X 1.04 1.49 0.56 1.09 | 1.12 | 1.73 1.22 | 096 | 0.66 | 1.52 0.60 0.75 1.50 | 0.68 | 0.68
(4,4,4)X 1.04 1.51 0.54 1.09 | 1.14 | 1.75 | 1.22 | 095 | 0.66 | 1.53 0.60 0.75 1.51 | 0.67 | 0.67
Table 9. Detailed Ablation Table. MVMannequins per-scene chamfer (mm)
kinette kino
PSNR (db) Mean cos naked jea optl opt2 opt3 sho tig cos naked jea opt sho tig
(8.8.4)X 3690 || 29.56 | 40.76 | 30.80 | 40.62 | 38.80 | 34.23 | 37.76 | 31.86 | 39.76 | 41.66 | 35.88 | 3935 | 37.56 | 38.07
(12,12,4)X 36.93 29.57 | 40.79 | 30.79 | 40.63 | 38.82 | 34.24 | 37.78 | 31.83 | 39.79 | 41.73 | 3588 | 39.41 | 37.58 | 38.20
(4,4,1)X 35.84 29.24 | 38.61 30.52 | 39.03 | 37.47 | 33.55 | 36.24 | 31.24 | 38.81 39.46 | 3537 | 38.68 | 36.58 | 36.98
(4,42)X 36.53 29.31 | 40.09 | 30.62 | 40.07 | 3838 | 33.95 | 37.42 | 31.55 | 39.35 | 41.06 | 35.67 | 39.01 | 37.26 | 37.71
4,43)X 36.68 29.38 | 4039 | 30.66 | 40.30 | 38.54 | 34.05 | 37.56 | 31.62 | 39.50 | 41.37 | 35.72 | 39.14 | 37.41 37.86
(4,4,4)X 36.81 29.48 | 40.61 30.73 | 40.48 | 38.69 | 34.13 | 37.70 | 31.74 | 39.64 | 41.57 | 35.80 | 39.29 | 37.50 | 37.99
Table 10. Detailed Ablation Table. MVMannequins per-scene PSNR
PSNR | Resolution || Mean || AISI | A2SI | A3S1 | A4SI | A5S1 | A6SI | A7SI | ASSI | AIS2 | A4S2 | A5S2 | A6S2 | A8S2
(4,4,4)X /1 37.48 37.64 | 3821 | 37.58 | 35.78 | 38.36 | 36.80 | 37.80 | 38.09 | 37.91 | 3559 | 38.56 | 36.59 | 38.32
(4,4,4)X /2 36.62 36.86 | 36.90 | 36.59 | 34.55 | 37.54 | 3639 | 37.03 | 37.28 | 37.19 | 3432 | 37.75 | 36.24 | 37.47
(4,4,4)X /4 34.75 3543 | 34.05 | 3521 | 32.08 | 3559 | 3496 | 3541 35.16 | 35.67 | 32.14 | 3594 | 3475 | 35.34
Voxurf /2 36.56 37.04 | 3693 | 36.17 | 34.58 | 36.96 | 36.85 | 36.69 | 36.99 | 37.12 | 34.33 | 37.53 | 36.81 | 37.31
Neus2 /2 34.53 3522 | 34.67 | 33.28 | 32.50 | 3520 | 33.86 | 3543 | 3541 | 3571 | 32.52 | 3538 | 34.02 | 35.72

Table 11. ActorsHQ per-scene PSNR




Chamfer (mm) || Mean 24 37 40 55 63 65 69 83 97 105 | 106 | 110 | 114 | 118 | 122
(4.4.4)/ 0.68 0.65 | 074 | 034 | 034 | 1.02 | 071 | 0.62 | 1.34 | 0.94 | 0.70 | 0.53 | 0.96 | 0.36 | 0.45 | 047
8.8.4)/ 0.71 056 | 0.71 | 034 | 034 | 138 | 0.74 | 0.64 | 1.34 | 095 | 0.70 | 0.54 | 1.07 | 0.35 | 0.45 | 047

Voxurf 0.73 0.76 | 072 | 067 | 03¢ | 095 | 0.62 | 0.79 | 1.35 | 096 | 0.74 | 0.61 | 1.17 | 0.35 | 0.44 | 0.49

Neus2 0.80 0.55 | 0.81 | 1.66 | 038 | 092 | 072 | 0.79 | 1.31 | 1.07 | 0.80 | 0.61 | 0.89 | 046 | 0.52 | 0.58

2DGS 0.76 047 | 082 | 032 | 036 | 1.06 | 0.89 | 0.81 | 1.30 | 1.23 | 0.66 | 0.65 | 1.34 | 042 | 0.66 | 0.46
Table 12. DTU per-scene chamfer (mm)

PSNR (db) || Mean 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122
(4447 37.03 || 35.58 | 30.59 | 35.59 | 35.56 | 38.89 | 38.06 | 34.81 | 39.90 | 33.97 | 38.84 | 40.03 | 36.23 | 3490 | 40.87 | 41.63
8,84/ 3774 || 36.73 | 31.53 | 36.31 | 36.74 | 39.38 | 38.93 | 35.05 | 40.25 | 34.69 | 39.51 | 40.45 | 36.79 | 35.60 | 41.59 | 42.49
Voxurf 37.08 || 3497 | 30.70 | 33.82 | 3502 | 39.45 | 39.22 | 3548 | 41.03 | 34.35 | 38.78 | 39.43 | 3536 | 3520 | 41.79 | 4169
Neus2 36.00 || 34.57 | 29.82 | 3430 | 34.64 | 3793 | 36.87 | 33.79 | 38.95 | 32.79 | 38.13 | 38.37 | 35.14 | 3437 | 39.93 | 40.32
2DGS 36.03 35.01 30.61 34.47 33.77 38.27 36.11 35.84 39.53 34.26 38.33 37.86 34.82 33.46 39.10 39.05

Table 13. DTU per-scene PSNR

Chamfer (mm) || Mean 24 37 40 55 63 65 69 83 97 105 | 106 | 110 | 114 | 118 | 122
(.4.5X 0.71 068 | 082 | 034 | 035 | 1.20 | 0.76 | 059 | 1.34 | 091 | 0.74 | 057 | 0.91 | 039 | 0.50 | 0.50
(8.8.4)/ 0.71 056 | 0.71 | 0.3 | 0.34 | 138 | 0.74 | 0.64 | 1.34 | 095 | 0.70 | 0.54 | 1.07 | 0.35 | 045 | 0.47

(12.12,4)/ 0.70 058 | 074 | 034 | 034 | 137 | 073 | 0.66 | 132 | 0.87 | 0.71 | 054 | 093 | 0.35 | 0.45 | 0.47

44,1/ 0.85 0.64 | 080 | 035 | 03¢ | 1.79 | 071 | 0.77 | 1.30 | 1.12 | 0.69 | 0.52 | 2.34 | 041 | 0.43 | 047

4,420/ 0.69 064 | 074 | 034 | 034 | 1.09 | 0.69 | 067 | 1.33 | 1.0I | 0.69 | 053 | 1.02 | 037 | 044 | 0.47

(4,43)/ 0.67 0.64 | 075 | 03¢ | 03¢ | 1.04 | 070 | 0.62 | 1.33 | 095 | 0.69 | 0.53 | 0.92 | 036 | 044 | 0.47

444/ 0.68 0.65 | 074 | 034 | 034 | 1.02 | 0.71 | 0.62 | 1.34 | 0.94 | 0.70 | 0.53 | 0.96 | 0.36 | 045 | 0.47
Table 14. Detailed Ablation Table. DTU per-scene chamfer (mm)

PSNR (db) || Mean 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122
@.4.5X 36.18 || 34.73 | 29.81 | 34.87 | 3452 | 3823 | 36.38 | 3452 | 39.35 | 33.17 | 38.34 | 38.80 36 3403 | 39.62 | 40.38
(8.83.4v 37.74 || 36.73 | 3153 | 3631 | 36.74 | 39.38 | 3893 | 35.05 | 4025 | 34.69 | 39.51 | 4045 | 36.79 | 35.60 | 41.59 | 42.49

(12,12,4)/ || 38.03 || 37.20 | 31.96 | 36.64 | 36.95 | 39.55 | 39.33 | 35.71 | 40.42 | 35.27 | 39.58 | 4032 | 36.97 | 35.89 | 41.97 | 42.75
(4,4,1)/ 3592 || 35.13 | 29.81 | 34.97 | 34.66 | 3640 | 36.77 | 32.90 | 38.86 | 3229 | 38.03 | 39.43 | 34.36 34 4036 | 40.92
4,420/ 3644 || 3525 | 29.97 | 3531 | 3527 | 37.66 | 37.32 | 33.62 | 39.48 | 3298 | 3853 | 39.71 | 3549 | 3439 | 40.53 | 4I.11
4,43/ 36.76 || 35.36 | 30.27 | 3540 | 3546 | 3846 | 37.66 | 3440 | 39.71 | 33.59 | 38.67 | 39.80 | 3595 | 34.67 | 40.69 | 41.32
(4447 37.03 || 35.58 | 30.59 | 3559 | 3556 | 38.89 | 38.06 | 34.81 | 39.90 | 33.97 | 38.84 | 40.03 | 36.23 | 3490 | 40.87 | 41.63

Table 15. Detailed Ablation Table. DTU per-scene PSNR




Chamfer || Mean || dog | bear | clock | durian | man | sculpture | stone | jade
444V 2.36 251 | 227 | 1.90 3.63 1.79 1.61 1.30 | 3.88
(8,84 2.21 2.24 | 2.03 | 1.69 3.26 | 1.81 1.61 136 | 3.71
Voxurf 2.64 2.28 | 220 | 1.88 298 | 2.11 1.75 396 | 3.99
Neus2 2.93 278 | 271 | 2.63 4.23 2.25 2.50 191 | 443
Table 16. BlendedM VS per-scene chamfer
PSNR Mean dog bear | clock | durian | man | sculpture | stone | jade
(444 || 35.19 || 3549 | 30.55 | 34.68 | 31.28 | 42.94 40.80 30.84 | 34.92
(8,8,4) || 3589 || 36.30 | 30.96 | 3542 | 31.65 | 43.72 41.34 31.01 | 36.69
Voxurf 35.11 || 3524 | 30.88 | 34.49 | 29.69 | 43.35 41.06 30.23 | 35.93
Neus2 33.62 || 3456 | 29.99 | 31.04 | 29.21 | 40.88 39.10 31.36 | 32.79
Table 17. BlendedM VS per-scene PSNR
Chamfer Mean || dog | bear | clock | durian | man | sculpture | stone | jade
444X 2.47 2.18 | 2.71 | 2.05 3.81 1.97 1.75 1.36 | 3.95
(8,84 2.21 224 | 2.03 | 1.69 3.26 1.81 1.61 1.36 | 3.71
12,12,4)v 231 210 | 231 | 1.86 3.58 | 1.96 1.59 1.34 | 3.74
4410 2.58 327 | 2.02 | 244 3.88 1.92 1.88 1.33 | 3.93
442w 2.35 259 | 2.03 | 2.04 3.66 | 1.80 1.62 1.29 | 3.75
443V 2.36 256 | 235 | 1.94 359 | .79 1.64 131 | 3.74
444V 2.36 251 | 227 | 1.90 3.63 1.79 1.61 1.30 | 3.88
Table 18. Detailed Ablation Table. BlendedM VS per-scene chamfer
(4.4,4)X 3476 || 35.71 | 30.35 | 33.76 31 42.65 | 40.08 | 30.84 | 33.72
(8,8,4)v 35.89 || 36.30 | 30.96 | 35.42 | 31.65 | 43.72 | 41.34 | 31.01 | 36.69
(12,12,4)/ || 36.17 || 36.50 | 30.97 | 36.55 | 32.12 | 43.75 | 41.41 | 31.04 | 37.00
44,1 34.44 || 34.48 | 30.34 | 32.81 | 31.12 | 42.44 | 39.89 | 30.75 | 33.72
442 34.86 35 30.53 | 33.85 | 31.38 | 42.71 | 40.40 | 30.82 | 34.19
443V 35.05 || 35.18 | 30.64 | 34.34 | 31.36 | 42.90 | 40.69 | 30.82 | 34.48
444V 35.19 || 35.49 | 30.55 | 34.68 | 31.28 | 42.94 | 40.80 | 30.84 | 34.92

Table 19. Detailed Ablation Table. BlendedM VS per-scene PSNR
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