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1. Proof of Propositions 1 and 2
1.1. Proof of Proposition 1
Proposition 1: If the contrastive clustering loss LCont(; , c)
achieve the optimal value, the enforcement ℓi between the
feature and the cluster will converges to ℓi = L−1.
Proof: Let us consider the optimization of the Eqn. (4) in
the paper as follows:

min−
L∑

i=1

log
exp(f ti × c)∑
f ′ exp(f

′ × c)
= −

L∑
i=1

log ℓi

subject to
L∑

i=1

ℓi = ℓ

(1)

where ℓ is the total enforcement between features f ti and
cluster c. Then, the optimization of Eqn. (4) in the paper
can be rewritten by using Lagrange multiplier as follows:

L
(
{ℓi}Li=1, λ

)
= −

L∑
i=1

log ℓi + λ(

L∑
i=1

ℓi − ℓ) (2)

where λ is the Lagrange multiplier. Then, the contrastive
clustering loss in Eqn. (4) in the paper achieves minimum if
and only if:

∂L
(
{ℓi}Li=1, λ

)
∂ℓi

= −ℓ−1
i + λ = 0

∂L
(
{ℓi}Li=1, λ

)
∂λ

=

L∑
i=1

ℓi − ℓ = 0

⇒ L
(
{ℓi}Li=1, λ

)
= −L log

ℓ

L

(3)

As the total enforcement between features and the cluster
is normalized, i.e., ℓ ∈ [0..1], the contrastive clustering loss
L
(
{ℓi}Li=1, λ

)
achieves minimum when log ℓ = 0 ⇒ ℓ = 1.

Then, the enforcement between a single feature and the
cluster will be equal to ℓi =

ℓ
L = L−1.

1.2. Proof of Proposition 2
Proposition 2: If the fairness contrastive clustering loss
Lα
Cont(; , c) achieve the optimal value, the enforcement ℓi

between the feature and the cluster will converges to ℓi =
(α−1 + L)−1.
Proof: We first define the the enforcement between transitive
vector v and the cluster c as ℓv = exp(v×c)∑

f′ exp(f
′×c) . Then, let

us consider the optimization of Eqn. (5) in the paper as
follows:

min−
L∑

i=1

α log ℓi − log ℓv

subject to
L∑

i=1

ℓi + ℓv = ℓ

(4)

Similar to Eqn. (1), Eqn. (4) can be reformulated via La-
grange multiplier as follows:

L
(
{ℓi}Li=1, λ

)
= −

L∑
i=1

α log ℓi−log ℓv+λ(

L∑
i=1

ℓi+ℓv−ℓ)

(5)
Then, the fairness contrastive loss Lα

Cont achieves minimum
if and only if:

∂L
(
{ℓi}Li=1, λ

)
∂ℓi

= −αℓ−1
i + λ = 0

∂L
(
{ℓi}Li=1, λ

)
∂ℓv

= −ℓ−1
v + λ = 0

∂L
(
{ℓi}Li=1, λ

)
∂λ

=

L∑
i=1

ℓi + ℓv − ℓ = 0

⇒ L
(
{ℓi}Li=1, λ

)
= −αL log

αℓ

1 + αL
− log

ℓ

1 + αL

(6)

As in Eqn. (6), the fairness contrastive learning loss
L
(
{ℓi}Li=1, λ

)
archives minimum when log ℓ = 0 → ℓ = 1.
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Thus, the enforcement between the single feature the cluster
will be re-balanced as ℓi = α

1+αL = (α−1 + L)−1.

2. Implementation

Implementation Our framework is implemented in PyTorch
and trained on four 40GB-VRAM NVIDIA A100 GPUs.
The contrastive loss in our implementation is normalized
with respect to the number of samples. These models are
optimized by the SGD optimizer [1] with momentum 0.9,
weight decay 10−4, and a batch size of 16. The learning
rate of the first learning step and the continual steps is set
to 10−4 and 5 × 10−5 respectively. To update the cluster
vectors c, following prior work [9–11], we maintain a set
of 500 features for each cluster and update the clusters after
K = 100 steps with a momentum η = 0.99. In our domain
incremental experiments, all clusters are updated at each
learning step by momentum update. The number of features
selected for each cluster in the visual grammar model is set
to M = 128. The balanced weight of CSS objective λCL

and the cluster regularizer λC is set to 1. Following the
common practices [10, 11], the margin between clusters ∇
is set to 10.
Unknown Cluster Initialization As mentioned in the main
paper, we adopt the DB-SCAN algorithm to initialize the
clusters for unknown samples. In addition, to reduce the
noise clusters and isolated clusters, we also merge several
close clusters, i.e., if the distance between two clusters is less
than the margin 2∇, these will be merged into a single cluster
where the new cluster center will be the means of these
two merging cluster centers. By empirical observation, we
have noticed that the number of unknown clusters initialized
at each learning step, i.e., NU at the current learning step
t, is not greater than 1.5× times of the remaining classes
(i.e., |Ct+1..T |) in the dataset, e.g., in our ADE20K 100-50
experiments, at the first learning step of 100 classes, there
are 68 unknown clusters that have been initialized while
there are 50 remaining unknown classes in the dataset.
Cluster Assignment In our approach, we use our visual
grammar model to assign the cluster for each feature repre-
sentation. Theoretically, although there is a possibility that
a feature could not be assigned to a cluster via the visual
grammar model, we have empirically observed that this issue
rarely happens in our approach. Indeed, since we initialize
the known clusters via the DB-SCAN, it guarantees that
for each feature, there is at least one cluster nearby that the
feature representation should belong to. However, to pre-
serve the integrity of our approach, for the outlier features in
cases that cannot be assigned clusters via the visual grammar
model, these outliers will be heuristically assigned to their
closest clusters as similar to [10, 11].
Continual Learning Procedure Algorithm 1 illustrates the
training procedure of our CSS approach.

Algorithm 1 CSS Procedure At Learning Step t

Require: Learning Step t, Dataset Dt, Visual Grammar
ϕ(;Θt−1), and Segmentation Model F (;Θt−1)

1: Step 0: Extract features on Dt by F (; , θt−1)
2: Step 1: Initialize new known clusters for Ct of features ex-

tracted in Step 0
3: Step 2: Initialize potential unknown clusters of features ex-

tracted in Step 0
4: Step 3: Train CSS Model F (; θt) on Dt

5: Step 4: Extract features on Dt by F (; , θt)
6: Step 5: Train Visual Grammar Model ϕ(; ,Θt) on current

known clusters c and features extracted in Step 4
7: return F (; θt) and ϕ(;Θt)

3. Additional Experimental Results

3.1. Experiment Results of ADE20K 50-50 Bench-
mark

Table 1 presents the results of our method on the ADE20K
50-50 benchmark compared to prior methods. For fair com-
parisons, we use the DeepLab-V3 and Transformer in this
experiment. As shown in the results, our proposed FALCON
approach significantly outperforms prior methods. The re-
sults of our approach have reduced the gap with the upper
bound result.

Table 1. Experimental results on ADE20K 50-50 Benchmark

ADE20K 50-50 (3 steps)
Network Method 0-50 50-150 all

MiB [2] 45.6 21.0 29.3
PLOP [8] 48.8 21.0 30.4
LGKD+PLOP [13] 49.4 29.4 36.0

DeepLab-V3 RCIL [14] 47.8 23.0 31.2
RCIL+LGKD [13] 49.1 27.2 34.4
FairCL [11] 49.7 26.8 34.6
FALCON 50.6 31.2 37.6
Upper Bound 51.1 33.25 38.9
FairCL [11] 49.6 27.8 35.6

Transformer FALCON 53.0 36.8 42.2
Upper Bound 54.9 40.8 45.5

3.2. Ablation Study

Effectiveness of Choosing Margin ∇ Table 2 studies the
effectiveness of the value of margin ∇ to the performance
of our approach on ADE20K 100-50 and ADE20K 100-10
benchmarks. As shown in the results, the change of ∇ also
slightly influences the performance of the model. Since the
margin defines the distance between two clusters, while the
smaller value of the margin ∇ could cause the incorrect
cluster assignment of the features, the larger value of the
margin ∇ could produce the less compact clusters.



Table 2. Effectiveness of Choosing Margin ∇

(a) ADE20K 100-50
0-100 101-150 all Major Minor

∇ = 5 44.4 21.8 36.9 51.9 29.4
∇ = 10 44.6 24.5 37.9 52.1 30.8
∇ = 20 44.7 22.2 37.2 51.7 29.9

(b) ADE20K 100-10
0-100 101-150 all Major Minor

∇ = 5 43.2 18.7 35.0 50.5 27.3
∇ = 10 44.4 20.4 36.4 51.8 28.7
∇ = 20 43.5 19.9 35.7 51.2 27.9

Effectiveness of Choosing Number of Features M We
study the impact of choosing the number of features M in
the visual grammar model. As in shown Table 3, the optimal
performance of our approach is M = 128. When the number
of features selected is small (M = 96), it does not have
enough number of features to form the visual grammar so
the model is hard to exploit the correlation among features
and the cluster. Meanwhile, when we increase the number
of selected features (M = 256), the clusters will consist
of many outlier features (the ones that do not belong to
the cluster), thus being challenging for the visual grammar
model to exploit the topological structures of the feature
distribution.

Table 3. Effectiveness of Number of Features M in a Cluster of
Visual Grammar Model.

(a) ADE20K 100-50
0-100 101-150 all Major Minor

M = 96 43.0 19.6 35.2 50.5 27.5
M = 128 44.6 24.5 37.9 52.1 30.8
M = 256 43.6 21.6 36.3 51.0 28.9

(b) ADE20K 100-10
0-100 101-150 all Major Minor

M = 96 42.2 16.4 33.6 50.2 25.3
M = 128 44.4 20.4 36.4 51.8 28.7
M = 256 42.7 17.1 34.2 50.6 26.0

Effectiveness of Different Segmentation Networks To il-
lustrate the flexibility of our proposed approach, we eval-
uate our proposed approach with different network back-
bones. Table 4 illustrates the results of our approach using
DeepLab-V3 [5], SegFormer [12] with different backbones,
i.e., ResNet-50, ResNet-101, MiT-B2, and MiT-B3. As
shown in the performance, the more powerful the segmen-
tation model is, the better performance of the model is. In
particular, our approach has shown its flexibility since it
consistently improves the performance of the segmentation
model and achieves the SOTA performance on two different
benchmarks, i.e., the performance of Transformer models

achieves 41.9%, and 40.3% on ADE20K 100-50, ADE20K
100-10, respectively.

Table 4. Effectiveness of Different Backbones on ADE20K.

(a) ADE20K 100-50
Backbone 0-100 101-150 all Major Minor

DeepLab-V3
R-50 44.3 15.2 34.7 51.5 26.4

R-101 44.6 24.5 37.9 52.1 30.8

Transformer
MiT-B2 44.5 27.4 38.8 52.4 32.2
MiT-B3 47.5 30.6 41.9 53.8 35.8

(b) ADE20K 100-10
Backbone 0-100 101-150 all Major Minor

DeepLab-V3
R-50 43.5 16.5 34.5 51.1 26.2

R-101 44.4 20.4 36.4 51.8 28.7

Transformer
MiT-B2 45.4 22.7 37.8 52.6 30.4
MiT-B3 47.3 26.2 40.3 54.0 33.4

4. Relation to Knowledge Distillation
Knowledge Distillation is a common approach to continual
semantic segmentation [3, 4, 8, 14]. Prior work in clustering
[11] has shown that the clustering loss is an upper bound
of the knowledge distillation loss. Formally, the knowledge
distillation loss can be formed as follows:

Ldistill(x
t, F, θt, θt−1) = L(Ft−1,Ft) (7)

where Ft and Ft−1 are the feature representations extracted
from the model at learning step t and step t− 1, respectively,
and the metric L measure the knowledge gap between Ft

and Ft−1. Then, given a set of cluster c, we consider the
following triangle inequality of the metric L as follows:

∀c : L(Ft,Ft−1) ≤ L(Ft, c) + L(c,Ft−1)

⇔ L(Ft,Ft−1)︸ ︷︷ ︸
Ldistill

≤ 1

|C1..T |
∑
c

L(Ft, c)︸ ︷︷ ︸
LCont

+L(c,Ft−1)


(8)

At the computational time of Contrastive Clustering loss,
the set of cluster vectors c is fixed (could be considered as
constants). In addition, the features extracted at learning step
t−1, i.e., Ft−1, are constant due to the fix pre-trained model
θt−1. Therefore, without a strict argument, the distance
L(c,Ft−1) could be considered as constant. Therefore, Eqn.
(8) can be further derived as follows:

L(Ft,Ft−1)︸ ︷︷ ︸
Ldistill

= O
(

L
1

|C1..T |︸ ︷︷ ︸
Constant

∑
c

[
L(Ft, c)︸ ︷︷ ︸
LCont

+L(c,Ft−1)︸ ︷︷ ︸
Constant

])

= O
(∑

c

L(Ft, c)︸ ︷︷ ︸
LCont

)

⇒ Ldistill(F
t−1,Ft) = O

(
LCont(F

t, c)
)

(9)



where O is the Big-O notation. Hence, from Eqn. (9), with-
out lack of generality, we can observe that the Contrastive
Clustering Loss is the upper bound of the Knowledge Dis-
tillation loss. Therefore, by minimizing the Contrastive
Clustering Loss, the constraint of Knowledge Distillation is
also maintained due to the property of the upper bound.

5. Discussion of Limitations and Broader Im-
pact

Limitations. In our paper, we choose a specific set of hyper-
parameters and learning approaches to support our hypoth-
esis. However, our work could contain several limitations.
First, choosing the scaling factor α could be considered as
one of the potential limitations of our approach. In prac-
tice, when data keeps continuously growing, the pre-defined
scaling factor α could not be good enough to control the
fairness among classes. Our work focuses on investigating
the effectiveness of our proposed losses to fairness, catas-
trophic forgetting, and background shift problems. Thus, the
investigation of balance weights among losses has not been
fully exploited, and we leave this experiment as our future
work. Third, initializing the unknown clusters at each train-
ing step could potentially be room for improvement since the
bad initial clusters could result in difficulty during training
and updating these clusters and linking the unknown clusters
learned in previous steps and new initial unknown clusters
at the current learning steps have been yet fully exploited in
our method. In addition, while our approach is designed for
the DeepLab-V3 and Transformer segmentation networks
[5, 12], the extensions of FALCON to mask-based segmenta-
tion networks [3, 6, 7] could be a potential next research for
further performance improvement. These limitations could
motivate new studies to further improve Fairness Learning
via the Contrastive Attention Approach to continual learning
in the future.
Broader Impact. Our paper investigates and addresses the
fairness problem in continual learning. Our contribution is
a step toward the fairness and transparency of continual se-
mantic segmentation. Our study highlights the significance
of fairness in continual semantic segmentation learning and
presents a novel approach to address fairness issues, enhanc-
ing the robustness and credibility of the segmentation model.
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